
Bread and Yoghurt Brewing Temperature
Controller

For many years I have been making all the bread we use in our household and brewing our own perpetual
heirloom yoghurt . Of course, for both these activities you need a warm space to keep the bugs happy. To do
this I used an old 12V battery charger and the heated printer bed we used as a duckling warmer. A simple
temperature controller was put between the battery charger and heated bed to maintain the right
temperatures. This worked pretty well until the day the battery charger finally gave up the ghost with a bang,
flash of light and issuing of that ever important smoke that keeps everything electronic working. The solution
was simple; get another 12V supply and continue. But it wasn’t to be. I found to my amazement that the
temperature controller we had used would not work on clean DC as supplied by a modern 12V power supply
or even from a battery. It only worked on the rectified and un-smoothed 12V provided by the cheapest,
nastiest 12V supplies that were now impossible to find.
All of a sudden I had another emergency electronics project on my hands. And so I devised a scheme to
build a better quality temperature controller based on an Arduino. Alongside this was the introduction of a
new heater arrangement that would provide more even and effective heating.

The Circuit
In many ways the project was a cut down version of the Solar Water Heater Controller Project making use of
many of the same components such as the same opto-coupled relay and thermistors.
The controls consisted of two potentiometers to set the upper and lower set point temperatures, a push
button to switch between selecting the set points and monitoring the temperature. A 4-digit display showed
the current temperature and two LEDs above each of the potentiometers indicated which set point you were
setting. I wanted to keep it as simple as possible.
I used the shell of the old battery charger to house the circuit and so had an ammeter and switch available to
use.

www.techmonkeybusiness.com Page 1 of 9 May 2021

http://www.techmonkeybusiness.com/
https://www.techmonkeybusiness.com/articles/Solar_Water_Heater_Controller.html
https://elfnor.com/a-novel-use-for-a-3d-heated-printer-bed.html
https://shop.culturesforhealth.com/collections/yogurt
https://shop.culturesforhealth.com/collections/yogurt
https://shop.culturesforhealth.com/collections/yogurt

The 12V supply was from a 6A 12V DC supply normally used to power arrays of LED downlights. With a
40W heater the maximum current was going to be just over 3A and so I had plenty of capacity with this
power supply.

The four digit display was one based on two shift registers rather than the much more convenient TM1637
display.

The major components used were:
• Arduino Uno
• Opto Coupled Relay
• LM317 Voltage regulator providing 5V supply to some components
• A 10k NTC Thermistor with a Beta value of 4100
• 12V 6A LED Driver
• 4 Bit LED Digital Tube Module (based on two 74HC595 Shift Registers). I purchased this from

Banggood.

www.techmonkeybusiness.com Page 2 of 9 May 2021

The Power Supply

http://www.techmonkeybusiness.com/
https://www/techmonkeybusiness.com/articles/Thermistor_Beta_Values.html

The Physical Connections
The diagram below shows how the circuit was constructed. I had an Arduino Uno and shield style
prototyping board handy so I grabbed these for the main part of the circuit. The whole lot was stuffed into
the battery charger casing. If you think the diagram below is messy, it’s nothing compared to the mass of
wires and bits that ended up being shoved into the battery charger casing.

www.techmonkeybusiness.com Page 3 of 9 May 2021

The Controller Mounted in Old Battery Charger Shell

http://www.techmonkeybusiness.com/

The Code
You can download the code from here: TempControlv6.ino

You will need the LEDDisplay74HC595 library to use the 4-Digit display. You can find that on Chrizzzzz’s
official repository or here on TechMonkeyBusiness or through the collected Arduino Libraries page.

To keep things simple I used a couple of work arounds:
• I have avoided using interrupts to monitor the button because of the problems caused by button

bounce. Instead the user has to hold the button down for a short period in order to change modes
between displaying the temperature and setting the temperature set points.

• I also included an limit on the temperature set points to ensure the upper set point was always a little
above the lower set point and visa versa.

/* TempControlv6.ino
This is a temperature controller for low temperature operation of
a low temperature heating device. The temperatures are measured by
a 10K B=4100 Thermistor with setpoints selected by using two potentiometers.
The setpoints, and current temperature are shown on a 4 dgit display.
A button is used to select between what is shown and what is changable.
LEDs indicated which setpoint is being shown and changable and another LED
shows when the relay is closed.

Hamish Trolove 2020

4-Digit display is one using two 74HC595 shift registers.

The relay is an optically isolated module rated for 10A.

Supply is 12V, but board mounted regulator outputs 5V for
the 4-digit display, and Relay solenoid.

Pins are:

A0: High set point adjust potentiometer
A1: Low set point adjust potentiometer
A2: 10K B=4100 Thermistor

D2 (interrupt 0): Button for selecting display mode

D4: 4 Digit Display SCLK
D5: 4 Digit Display RCLK
D6: 4 Digit Display DIO

D10: Relay control (IN)
D11: Relay ON LED
D12: Low Setpoint Display Model indicator
D13: High Setpoint Display Model indicator

*/

#include <LEDDisplay74HC595.h> // For the 4-digit diplay
#include <math.h> // We need this to calculate temperature values from

const int buttnPin =2;

const int sclkPin = 4;
const int rclkPin = 5;
const int dioPin = 6;

const int RelayPin = 10;

www.techmonkeybusiness.com Page 4 of 9 May 2021

http://www.techmonkeybusiness.com/
https://www.techmonkeybusiness.com/articles/Arduino_Library_Collection.html
https://www.techmonkeybusiness.com/Code/LEDDisplay74HC595.zip
https://github.com/chrizzzzz/LEDDisplay74HC595
https://www.techmonkeybusiness.com/Code/TempControlv6.ino

const int RelayLEDPin = 11;
const int LEDDisplaySPL = 12;
const int LEDDisplaySPH = 13;

const int SetPointH = A0; // The set point potentiometers
const int SetPointL = A1;
const int ThermPin = A2; // The thermistor on Analogue Pin 2

LEDDisplay74HC595 ledDisplay(sclkPin, rclkPin, dioPin);

int ThermValue = 0; //The raw thermistor analog pin reading
double TempAct = 0.0; //Actual Temperature
double TempSPL = 0.0; //Temperature Set Point Low
double TempSPH = 0.0; //Temperature Set Point High
double Temp2Disp = 0.0; //Temperature to Display

int TempSPLraw = 0; //Raw analog reading for Low Temp setpoint
int TempSPHraw = 0; //Raw analog reading for Low Temp setpoint

long runprevMillis = 0; // will store last through cycle
long runInterval = 500; //Cycle time between readings

int DispID = 1; //Pointer for which item is shown on display, 0 = Low Set point
 // 1 = Actual temp, 2 = high set point.

boolean LEDSPHFlag = LOW; //Flags for the Display Status LEDs
boolean LEDSPLFlag = LOW;

void setup()
{
 pinMode(RelayPin,OUTPUT);
 pinMode(RelayLEDPin, OUTPUT);
 pinMode(LEDDisplaySPL,OUTPUT);
 pinMode(LEDDisplaySPH,OUTPUT);
 pinMode(buttnPin,INPUT);

 //Do an initial read of the setpoint potentiometers
 TempSPLraw = analogRead(SetPointL);
 TempSPHraw = analogRead(SetPointH);
 TempSPL = 0.01*float(map(TempSPLraw,0,1023,1500,5500));
 TempSPH = 0.01*float(map(TempSPHraw,0,1023,1800,6000));
 if(TempSPL > TempSPH-2.0)
 {
 TempSPL = TempSPH-2.0; //This prevents the lower setpoint
 //being greater than the upper setpoint
 }
 if(TempSPH < TempSPL+1.5)
 {
 TempSPH = TempSPL+1.5; //This prevents the upper setpoint
 //being lowerer than the lower setpoint
 }

 digitalWrite(RelayPin,HIGH); //Start of with the relay ON
 digitalWrite(RelayLEDPin,HIGH);

}

www.techmonkeybusiness.com Page 5 of 9 May 2021

http://www.techmonkeybusiness.com/

void loop()
{
 unsigned long RuncurrentMillis = millis();
 if(abs(RuncurrentMillis - runprevMillis > runInterval)) // absolute value
used to get around
 //problem caused by long numbers overrunning if systems operates for longer
than 50 days.
 {
 runprevMillis = RuncurrentMillis; //Save the last time through
 ThermValue = analogRead(ThermPin);
 TempAct = TempCalc(ThermValue); //Just duck out to the calculation routine.

 if(digitalRead(buttnPin))
 {
 DispID = DispID+1;
 if(DispID > 2)
 {
 DispID = 0;
 }
 }

 if(DispID==0)
 {
 LEDSPHFlag = LOW;
 LEDSPLFlag = HIGH;
 TempSPLraw = analogRead(SetPointL);
 TempSPL = 0.01*float(map(TempSPLraw,0,1023,1500,5500));
 if(TempSPL > TempSPH-2.0)
 {
 TempSPL = TempSPH-2.0; //This prevents the lower setpoint
 //being greater than the upper setpoint
 }
 Temp2Disp = TempSPL;
 }
 else if(DispID==1)
 {
 LEDSPHFlag = LOW;
 LEDSPLFlag = LOW;
 Temp2Disp = TempAct;
 }
 else
 {
 LEDSPHFlag = HIGH;
 LEDSPLFlag = LOW;
 TempSPHraw = analogRead(SetPointH);
 TempSPH = 0.01*float(map(TempSPHraw,0,1023,1800,6000));
 if(TempSPH < TempSPL+1.5)
 {
 TempSPH = TempSPL+1.5; //This prevents the upper setpoint
 //being lowerer than the lower setpoint
 }
 Temp2Disp = TempSPH;
 }

 digitalWrite(LEDDisplaySPL,LEDSPLFlag);
 digitalWrite(LEDDisplaySPH,LEDSPHFlag);

 if(TempAct<TempSPL)
 {
 digitalWrite(RelayPin,HIGH);

www.techmonkeybusiness.com Page 6 of 9 May 2021

http://www.techmonkeybusiness.com/

 digitalWrite(RelayLEDPin,HIGH);
 }
 else if(TempAct>TempSPH)
 {
 digitalWrite(RelayPin,LOW);
 digitalWrite(RelayLEDPin,LOW);
 }
 }
 ledDisplay.refresh(Temp2Disp, 2); //Display the temperature to 2 decimal
places

}

double TempCalc(int ThermIn) //For Thermocouples Tin and Tstag with beta values
4100
{
 double TempVal = 1/((1/298.00)+(1/4100.00)*log(1024.00/ThermIn-1.00));
 TempVal = TempVal - 273.00; //Note the extra decimal places force float
usage.
 return TempVal;
}

The Heater
The heater was a 40W 3D Printer cartridge heater which was fitted into a block of aluminium to which a
massive heatsink was screwed. Across this a repurposed 12V computer CPU fan blows air. This
arrangement was extremely effective at transferring the heat from the heater element to the air. So much so
that even if the fan and temperature control circuit failed the heater element would never get much above
50°C.

The temperature sensor was mounted on the intake to the fan.

To make sure there is no chance of overheating I sit the heater on four ceramic mini-bricks.

The specs for the heat sink were:

• Size: 120 x 69 x 27mm
• Plate thickness: 27mm
• Tooth slice thickness: 1mm
• Tooth spacing: 2.5mm
• Tooth piece quantity: 22

www.techmonkeybusiness.com Page 7 of 9 May 2021

http://www.techmonkeybusiness.com/

www.techmonkeybusiness.com Page 8 of 9 May 2021

The heater sitting in a repurposed polystyrene packing box
keeping a yoghurt warm.

http://www.techmonkeybusiness.com/

How does it perform?
Pretty good. The temperature cycles between the two set points nicely. The graph appears to show a
variation but this is simply due to the five minute sample resolution missing the peaks and troughs. If some
thing like a warm dough or a cool yoghurt starter is put into the polystyrene box you see the time to heat
change as it needs to do more or less work to get the load to temperature.

The described project is provided by Hamish Trolove under a Creative Commons Attribution 4.0 International
License.

www.techmonkeybusiness.comwww.techmonkeybusiness.com

www.techmonkeybusiness.com Page 9 of 9 May 2021

http://www.techmonkeybusiness.com/
http://www.techmonkeybusiness.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	The Circuit
	The Physical Connections
	The Code
	The Heater
	How does it perform?

