
Robotics 1c

Programming a Guided mBot

Task for this Session
Building on what we have learned in the last session, we are going to design a program to guide our mBots
through a pre-set route.

For our programme we will only use the code blocks we experimented with last time. These are the motor
control blocks; “run forward at speed …” and “set motor M1 speed …” and the wait block.

Your program is basically the same sort of instructions you might give to someone who has a blindfold on
who you are guiding through a maze. Obviously you are not so mean as to deliberately crash them into a
wall…right?

Robotics 1c – Programming a Guided mBot Page 1 of 4 June 2017

The Maze
Use strips of cardboard, old boxes, and anything else that will make a good barrier to create a “maze”
through which we will guide our robots.

Once the maze is set up, use a ruler or measuring tape to map out the directions and distances you will
need your mBot to follow in order to get through the maze. If it helps to visualise it, walk through the maze
yourself and take note of which way you turn at each corner.

Write your list of instructions down.

Translating Your Instructions
You instructions are good for you but you need to translate them into numbers that are meaningful for the
mBot. Here is where the numbers you worked out last time become useful.

You will have mBot speed and time measurements for particular distances and speed and time
measurements for executing a turn. Let’s use them to translate your instructions into something we can
use for our program.

From last time:

At a speed setting of ____ the mBot moved ____cm in ____ seconds.

At a speed setting of ____ the mBot turned ____ degrees in ____ seconds.

Using the example above let us say our measurements from last week were:

At a speed setting of 100 the mBot moved 60cm in 3 seconds.

At a speed setting of 100 the mBot turned 120 degrees in 2.5 seconds.

If we want to stick with our speed setting of 100, to make the mBot run forward 75cm we would need to
work out a time for the wait block. Our calculation will look something like:

mBot Velocity at speed setting of 100=
Dist ance

Time
=

60cm
3 s

=20cm /s

Time tocover 75cm=
Distance
Velocity

=
75cm

20 cm /s
=3.75seconds

The code block for running forward 75 cm would look like this:

Robotics 1c – Programming a Guided mBot Page 2 of 4 June 2017

Similarly the turn can be calculated the same way but this time we have a thing called Angular Velocity
which is how fast something turns.

mBot Angular Velocity at speed setting of 100=
Angle Covered

Time
=

120°
2.5 s

=48 ° /s

Time to turn120 °=
Angle

Velocity
=

90 °
48 ° / s

=1.88 seconds

The code block for doing a right angle turn to the right would look like this:

To make our mBot travel forward 75cm and then do a 90° turn to the right we just stack the two series of
blocks together.

Use a spreadsheet to calculate the times for each block for your route through the maze then set up your
program with all of the blocks stacked together. Remember to add a speed 0 block at the end to stop the
mBot running away.

Try out your programmed mBot in the maze.

If you really don’t want to go through all the calculations, you can always use trial and error.

Robotics 1c – Programming a Guided mBot Page 3 of 4 June 2017

What have We Observed?
Our guided mBot is interacting with the real world based on the instructions you have given it. But the real
world is not perfect. How did the real world affect the mbot’s ability to get through the maze.

 What happens if the mBot’s path is disturbed along the way?
 What effect would deep carpet have? What effect would lino have?
 What happens to errors as more instructions are added?
 What happens if the maze changes?

Conclusions
So we have looked at how to issue a sequence of directional instructions to our mBot and had it follow
those instructions. Because the mBot was operating in the real world it would have had to contend with
things like a surface that wasn’t perfectly even, and it may have struggled with getting caught on corners
and pulled off course. Because the mBot was not programmed to detect and react to the world around it, it
was unable to handle any changes or oddities of the terrain.

Is this a good way of getting a robot to carry out a task?

For some situations, sure. If accuracy is not an issue and we know our robot well and the route can be
planned to great detail it is a fast solution. But it only works for one route. Even though it operates with
high accuracy a 3D printer is a robot that works this way. It can do this because its slides, motors, and
material are known and have no variability. At the start of a print job it uses some touch switches to find it’s
home position, but once it is printing it does not check again. The directions are given to it in a continuous
sequence that do not change if the printer gets knocked off course or the filament jams or one of the motor
drives starts slipping.

A better solution is for the robot to be given the ability to sense its surroundings and make decisions based
on what it can detect. This will allow the robot to respond to variability.

Well Done
We have looked at making another simple program and seen how the real world can affect the success of
an otherwise perfect program.

Next time we will look at how to make the mBot perceive and respond to the real world.

This document “Robotics1c - Programming a Guided mBot” by Hamish Trolove is provided under a creative
commons license - Attribution, Share Alike.

http://creativecommons.org/licenses/by-sa/4.0/

www.techmonkeybusiness.comwww.techmonkeybusiness.com
Robotics 1c – Programming a Guided mBot Page 4 of 4 June 2017

http://creativecommons.org/licenses/by-sa/4.0/

	Task for this Session
	The Maze
	Translating Your Instructions
	What have We Observed?
	Conclusions
	Well Done

