ROV Control Sketches — Fourth Edition

This is the fourth and probably final release of the Arduino Sketches used to control the ROV. This edition
introduces the HS5803-14BA depth sensor and the HMC5883L Digital Compass both of which are i2c
devices. Because | had used Arduino Nano pin A5 for the onboard battery voltage monitoring in the earlier
control system, a minor modification to the ROV circuit and code was required to free the pin up for the i2c
Sensors.

The sketch for the topside station, ROVPS2Control Masterv8.ino, did not need to be modified from the
earlier version (ROVPS2Control Masterv7.ino) to cater for the added sensors, because there were
already placeholders included.

The previous editions of this control system can be found here:
* Version 3
e Version 2
¢ Version 1
For the sake of completeness, some of the details from the previous editions have been repeated here.

A PS2 controller is used for the operator's input, and a 16x2 LCD display is use to show the battery voltage
in the ROV, the temperature within the ROV, the heading and the depth. A series of three LEDs provide
feedback on the probable status of the ROV headlights, whether the camera is recording or not and an
indication that a photo has been triggered. Another two LEDs provide warning signals in the case of low
battery voltage on board the ROV or too high temperature within the ROV.

The ROV and the topside system are connected via a 100m CAT5 tether. Communication between the
Topside Arduino (Master) and the ROV Arduino (Slave) makes use of the EasyTransfer library by Bill Porter
(http://www.billporter.info/).

As it happens, the video output from the Horyzon camera includes icons that report the status of the camera.
It tells the operator whether it is in video mode, recording video, camera mode, or taking a photo. Because
this is an accurate indication of what the camera is doing rather than the "best guess" indication provided by
the topside Arduino and status LEDs, it is probably better to ignore the camera control LED indicators on the
topside control box and just use the on-screen indicators.

The ROV uses HobbyWing EZRUN 18A ESCs which need to be programmed and calibrated before use in
this system. The process to do this is described in this article: Programming and Calibrating the EZRUN
18A ESCs.

http://www.techmonkeybusiness.com/opensource-rov.html
http://www.techmonkeybusiness.com/programming-and-calibrating-the-ezrun-18a-escs.html
http://www.techmonkeybusiness.com/programming-and-calibrating-the-ezrun-18a-escs.html
http://www.techmonkeybusiness.com/programming-and-calibrating-the-ezrun-18a-escs.html
http://www.techmonkeybusiness.com/programming-and-calibrating-the-ezrun-18a-escs.html
http://www.billporter.info/
http://www.techmonkeybusiness.com/rov-control-sketches-first-edition.html
http://www.techmonkeybusiness.com/rov-control-sketches-second-edition.html
http://www.techmonkeybusiness.com/rov-control-sketches-third-edition.html
http://www.techmonkeybusiness.com/hmc5883l-digital-compass-on-an-arduino.html
http://www.techmonkeybusiness.com/a-simple-pressure-and-temperature-logger.html

12v

Supply
Connection

ideo Out

Controlling the ROV

The Playstation 2 controller is a nice cheap control interface with more buttons and controls than are
required for this project. Like the previous editions of the ROV control sketches, the PS2 controller is used
for controlling things on the ROV such as the motors, lights, and camera, as well as being able to flick
through the data being displayed on the topside station's LCD display. This uses the PSX library from Bill
Porter (http://www.billporter.info).

For more discussion on using the PS2 controller and Arduino to manipulate stuff, have a look at this page:
PS2 Controller Sketch for ESCs and Stuff.

At present these are the controls being used.

Camera Start/Stop
Pitch Switch Recarding
Up Data Sh{E;.un

./,»ﬂn LEl

A
Forward

Yaw Ya
Lafi Right
Backward

-

Topside Station Circuits

In addition to the PS2 Controller, the topside station makes use of an Arduino Nano and a 16x2 LCD Display.
A 78TOS5CT regulator is used to provide a 5V supply to the LCD Display and for the Command and Attention

http://www.techmonkeybusiness.com/ps2-controller-sketch-for-escs-and-stuff.html
http://www.billporter.info/

pins of the PS2 controller. The LCD library is part of the standard Arduino IDE, so you will not need to hunt

around for this in order to get the Master sketch to work. You will need to find Bill Porter's EasyTransfer and

PSX libraries. Both can be found on his website (http://www.billporter.info) or the editions used to develop

this project can be found archived on this page — Arduino Library Collection.

wod

adeosyu| g

Sa0'3uizyag] yum apep

* 2 000

* s 00
oo 0 0

s e e
s e s
s e e
DY
s s s
s o0 e

Buiurepy Bujuiep
dwa) YbiH sbeyjop mo

Y

)

Clock
Attention
3.3vDC
GND

196BLL Jap1008y
ojoud 08pIA
BIBWED ’

0JBIIPU| gnyers SWUBIIPEOH
ulepy

e 2008 o0 0o NS
s s 088 Py
PP Yy
ss s s s e e
ceeoeccecfoceoe
sabhsscscsBeccocSonss SV
s alb o000 s 00 2000
Ty s 80088 FRr s (3 s JoleinBay AS
e olboeeaoee oo gffe oo e 195018/
s s 880088080
s 88 s 88 s s s 08
.o eee oo PR
PRy s e s s o s 8
A O . D
oo fl o PP . .o
o s 000 Q0
s o fl o s s 88
o fl - PR
. sjes s e 00
. s 008 :
o - o/ oglle
LR N B A A e e
|}
&= s
. see sssse

aNS AOY oL
Xd AOY oL
X1 AOY oL

CRCRC R

LI BCRE)

NS

%SF
(610133

L BRI

L ORI

OO -5

http://www.techmonkeybusiness.com/arduino-library-collection.html
http://www.billporter.info/

Or if you prefer a more classic circuit diagram.

19UjdL BIA X4 AOY OL
JayidL BIA X1 AOYH OL

19yiaL eIn ONO AOY OL

J3]|04U0D 2Sd

]

NS

ORUSRY

N6-T'L
1amOd UoRBIGIN
o

%0010
AEE
ano

XX X

—{abpamounoy

Buuiem J0jeoipul sneis
aBelOA Slubipgon la

Mo SoPIA
AAS [4dJ
voee

VWA AR €a
voge AR voge
A AA va

voge vogE

7
ge
2e
=5
i>

=

Analog Input

| SQ

La
8d

Py
BB

indinondu [eyBiq
<

W

wwa | 60 '2<<|_
] | 010 oueN Uoee

wva| ta OUINPLY
zia SV —

-aa

+a31

JA: (¢}

949ad

s8d

vaa

€aq p=——

28q p—

19q =

09q =
3

Jomod ani

AEE

AA AAA

- wiL oL I®
SN ' i’ A o)eg
woo-sseursnqfeuowORI MMM a _.o_ arozy
’ 20 AL 6
s -®

aNo
e 5ANZH 6

S08L

The topside station for my ROV was produced on strip-board and the end product looks like this. The ugly
bit of bicycle tube on the left hand side surrounds the BNC connectors that | had on the baluns.
Unfortunately Baluns with BNC connectors were the only type available to me here. The rubber tube helps
keep the large all metal BNC components from touching any of the strip board tracks (which would let the
smoke out of something if they did.)

Display Board &
Video Out : : ' . Motherboard

The two strip-board layouts are shown below. Hopefully the colours, layout and all that will make it pretty
obvious which connections match each other on the two boards.

The Motherboard.

www.techmonkeybusiness.com

Serial to Tether

[o|lo]|o|l@ g

O [o]i (]| (o] | (e} 1o C o o]
= lslltol|Lsd{ted| ollafial|o||o 8l o o]} (e} {e
B o|c|o|o|fE o - 8l o o||o||c
O Clo][O]a O] B -l ollo||offefo I8fo
o e (0] Jl|fe3| ‘< (re]
[=} kg o] (e [e} <
o] 8 o ollo||lo o] - [fe]
) 8 o ollo||o o] - [[s]
I sl [e]| (] (@] o |8 o
O lked olle||lo (o}l| - |[o]
o] 8l o o|lc||ofie]lo |84 o
plioflo & Llo| M olloflofieffo|@d o
== ol any s, ol (e}]ie] (] [lo}] < [[o]
cllo - : = i 8o o] O
oo™ el (1 |15 | | [o] o 15T
8 o
o e, of|o|jo||oflo|o, Dp""OHC Q o WO allo
| @l oo \ ollo||o]lo ollo]|o]||o]fe = [g (o] allo
470,_1- O ollol|lo 2} [e] Of|o]|0||0||Z ™ "‘-.'] | (&]|[e] allo
ollo|fefe o] oljlolg (=] O ||& o o af|lo
o — oo (o]l |[«}{{o]i{e] Cﬂ:‘ (el | i {{w) [e]|[e]
- ollo — O || (o] (=]
@l ollofo]jof|o|lofjo||e (s]][e]
(s]({s1|ls] |[a}{]| o] |[e}] e] ollo
Bl (c|loflo]lo]|lo||o|lo]|lo ollo
912V umMotherboard" g ¢ e 5 F g
3 e} E}

The Display Board

www.techmonkeybusiness.com

=1l (Ielife}|{e]le}| s} o
o]l (Itelife]|[e]|le]| e} el
o|M|clo|lo]lo]lo o
S T e SN, S B3 e
= = L aoflc|lo||é
Main | o|M|o|jo]|ofle|fe o/lolloo|@|oofo|f
Headlgh ollollo]|ofe & EEE B
olle ollo] 330Q
z =l o|Mlo|o ofle
Video a (e]|[s] al|c
Recordgr L) i aljo oo
Status, o [s]|[®) al ol|lo o (|o
. . (iR | o BRI
o olfoflefle 0|5
Camerg ollol[c|[#lollo|lo o ollellelle (e ([
;gz‘:r ollo|joff@llo]lo|lo o ollollefle ol[o o
Indicator ojlojlej@le

Display board

You can download the vectorgraphic files in an SVG format from here. ROV_Masterv5_Stripboards.zip.

To keep the Arduino running quickly and efficiently, using Flashing LEDs for the warning lights and the video
recording light avoids the extra processing required to flash normal LEDs. The strip-board layout shown
below is a variation of the board shown above that makes use of Flashing LEDs (aka “FLEDs”).

www.techmonkeybusiness.com

:’:Ho’a‘ooco ollo|lellollollo
Plaljo o o]ofl Sllo[[Cmrealolo]o ollo|lo|lolo|e
HN::JalmhL ollo|o||= - S| ofloflo||o| ol
ead| 3
ot (& o] lo|olle oljo] lolle]lofioT ollo]lo|lollo|lo
Jlo]lo
—
ollo[le]le]lo]lo : o[
Video O|ojfofefofo ™ oo o/ Mlle
Recorddr [FLED) 0|0 (0|0 [|0/off) o= ollo
Status ollo|le|e|cf]|o d oflg, oo
e)| ollp
S e
TTETY SIEie; s o
C;‘:“?ra SIEECEIEE (S o CiIEHE [
oto = e
olle/|o|l@l|o]lc ollo|lo ol c
Trigger ollo|oflellolic]l [MiSIla o]) 5 [0 - o |fe]
Indicator olojo)Ele

Display board

http://www.techmonkeybusiness.com/models/ROV_Masterv5_Stripboards.zip

The ROV Circuits.

The ROV circuit is based on an Arduino Nano V3 which is communicating to the topside master through the
tether using RS232 serial protocol. On board the ROV the Arduino is issuing servo commands to the
thruster ESCs, and the camera pitch servo. Digital controls are used to switch on or off the headlights, and
to control the camera modes. It is also monitoring the temperature inside the electronics pod using a TMP36
temperature sensor and measuring the battery voltage using a simple voltage divider. The new addition is
a three port i2c bus for the HS5803-14BA depth sensor and the HMC5883L Digital Compass. The third i2¢c
port is unused.

Below is the circuit diagram for the ROV circuit. You will notice the system includes an LC Filter suitable for
FPV RC Aircraft systems to help protect the control board from voltage fluctuations from the main battery.
The LC Filter is an off-the-shelf item from Banggood.

ROV Circuit Diagram

4

MS5803-14BA Jumper
High Pressure Sensor Closed to Run

ESC Calibration
Sequence
]

v

Spare i2C HMC5883L Camera Pitch Servo
Connection pjgital Compass

oag> . m.n,sam.
o

*
&
s

Vertical Left Motor and ESC

D13 3 g D12

—

g

«

3 o

b 3.3V P D11 a

S £

g

2

>

?

36 D7 Vertical Right Motor and ESC

Temperature Sensor 4 Do 7

DA_A4] o APND5 N_r]

L_A5 @ D4 N1

As e D3 N
ATl B D2
] é sv bt . L. B GND
\I] GNDPY 0 9 RX0
- Vin P o P TX 1

Horizontal Left Motor and ESC

A

1kW
L

Horizontal Right Motor and ESC

LC FPV Filter

9-12v__

33

A

LED Headlight Array

Horyzon V3 Camera
Regulator

www.techmonkeybusiness.com
Video Balun
2Dy

{3
Made with Inkscape

You can download the vectorgraphic version of this file in an .SVG format from here.
ROV _Slave_Circuit_Diagramv2.zip.

http://www.banggood.com/
http://www.techmonkeybusiness.com/models/ROV_Slave_Circuit_Diagramv2.zip
http://www.techmonkeybusiness.com/hmc5883l-digital-compass-on-an-arduino.html
http://www.techmonkeybusiness.com/a-simple-pressure-and-temperature-logger.html
http://www.techmonkeybusiness.com/three-arduino-circuits-for-temperature-measurement.html
http://www.techmonkeybusiness.com/three-arduino-circuits-for-temperature-measurement.html

Below is the strip-board layout for the ROV control circuit for the sake of completion. Hopefully this makes
sense. | have tried to match connectign colours between this diagram and the circuit diagram above.

OAJIDS EIDWE:

o
o
3

i TR

To Lights

J1ayjal o] |euss

)

From Batteries
Via LC Filter

+srmme © © © © o 5 o

You can download an .SVG vectorgraphic version of this diagram to help make clear where the strip-board
tracks have been cut. The vectorgraphic version can be downloaded from here.
ROV _Slave_Stripboard_Layoutv2.zip.

The end product looks like this.

ESE Camera Control
ff}f'l\d/&’mo Header Header

Headlights

2V Supply

The Sketches

The sketches make use of three 3™ party libraries that will need to be installed into the Arduino IDE.

» Bill Porter's PSX library which can be found here: http://www.billporter.info.
* And Bill Porter's EasyTransfer library which can be found on the same website.
* The MS5803-14BA Pressure sensor library from Luke Miller can be found here:

http://github.com/millerlp

The remaining libraries for servos, i2c, LCD displays and such are all included with the standard Arduino
IDE.

You can also download the libraries from the following webpage: A Collection of Arduino Libraries Used
in This Project.

The two sketches presented below can be downloaded from here:

ROVPS2Control_Sketches_Release4.zip

http://www.techmonkeybusiness.com/Code/ROVPS2Control_Sketches_Release4.zip
http://www.techmonkeybusiness.com/models/ROV_Slave_Stripboard_Layoutv2.zip
http://www.techmonkeybusiness.com/arduino-library-collection.html
http://www.techmonkeybusiness.com/arduino-library-collection.html
http://github.com/millerlp
http://www.billporter.info/

Topside Arduino Sketch - aka the "Master"

The commands from the PS2 controller are translated to actual motor speeds and directions on the Master
rather than the slave. The messages back from the ROV are the ROV battery voltage, the internal
temperature, depth, and heading. The EasyTransfer library makes it easy to include more data at a later
stage.

/*

ROVPS2Control Masterv8.ino

Hamish Trolove — 30 March 2016

www . techmonkeybusiness.com

This sketch takes control commands from a PS2 handset and transmits the
commands using Bill Porter's EasyTransfer Library over a 9600 baud serial
link (100m tether).

This sketch is designed for an Arduino Nano with only one Serial Port.
Pin assignments are:

3.3V output to PS2 red Pin
Pin D10 to PS2 yellow pin
Pin D11 to PS2 orange pin
Pin D12 to PS2 brown pin
Pin D13 to PS2 blue pin

Pin D2 to LED Camera Photo Trigger Indicator

Pin D3 to LED Camera Record Indicator

Pin D4 to LED Main Lights Indicator

Pin D5 to LED ROV Battery Low Voltage Warning

Pin D6 to LED ROV Interior high temperature warning

Communications

Serial Connection: Topside D1 (TX) to ROV DO (RX)
Serial Connection: Topside DO (RX) to ROV D1 (TX)
Connect the GND on both

A 16x2 LCD screen is connected as follows
VSS to GND
VDD to 5V output of MC78TO05CT regulator
VO to sweep arm of 10kohm variable resistor
RS to Arduino Nano pin A0
RW to GND
E to Arduino Nano pin Al
D4 to Arduino Nano pin A2
D5 to Arduino Nano pin A3
D6 to Arduino Nano pin A4
D7 to Arduino Nano pin A5
A to 5V output of MC78T05CT regulator
K to GND via a 330ohm resistor

5V is supplied from a regulator to the 1Kohm pull up resistors
for PS2 as well as the LCD screen and it's backlight

The coding pulls on the PSX library developed by Bill Porter.
See www.billporter.info for the latest from Bill Porter and to
download the library.

The controls for the ROV are;
Left Stick - X-axis = Roll, Y-axis = Up/down

Right Stick - X-axis = Yaw, Y-axis = forward/back
Direction button pad left = LED Main lights On/0Off toggle
Direction button pad up = turn camera upwards

Direction button pad down = turn camera downwards
Direction button pad right = Change reading on display
Triangle = Start/Stop video recording

Circle = Take photo

*/

#include <PS2X_1lib.h> // Bill Porter's PS2 Library
#include <EasyTransfer.h> // Bill Porter's Easy Transfer Library
#include <LiquidCrystal.h>

PS2X ps2x; //The PS2 Controller Class
EasyTransfer ETin, ETout; //Create the two Easy transfer Objects for

// Two way communication

LiquidCrystal lcd(A0,Al1,A2,A3,A4,A5); //Pins for the LCD display

const int grnLEDpin
const int redLEDpin
const int yelLEDpin
const int VwarnLEDpin
const int TwarnLEDpin
const int LowBatVoltsl

//green LED is on Digital pin 4
//red LED is on Digital pin 3.
//yellow LED is on Digital pin 2
; //Voltage warning LED is on Pin D5
; //ROV temp warning LED is on Pin D6
96; //This is for holding the value of the
//Low Battery Voltage warning Voltage threshold x10.

I
N w
~e ~o ~e

o |
I o v

int ForwardvVal 0; //Value read off the PS2 Right Stick up/down.

int YawLeftVal = 0; //Value read off the PS2 Right Stick left/right

int UpvVal = 0; //Value read off the PS2 Left Stick up/down

int RollLeftval = 0; // Value read off the PS2 Left Stick left/right

float ROVTMP = 0; //Variable to hold the converted ROV interior temperature.
int DispOpt = 0; //Variable to signal which value to show on the display

long PhotoSignalRunTime = 0; //A variable to carry the time since photo
triggered.

volatile boolean PhotoActive = false; // A flag to show that the camera signal
has been sent.

struct RECEIVE_DATA_STRUCTURE{
int BattVolt; //Battery Voltage message from the ROV.
int ROVTemp; //ROV interior temperature back from the ROV
int ROVDepth; //ROV depth reading (m)
int ROVHDG; //ROV direction (Degrees)

struct SEND DATA STRUCTURE({
int upLraw; //Variables to carry the actual raw data for the ESCs
int upRraw;
int HLraw;
int HRraw;
int CamPitch; //Angle of the camera servo.
volatile boolean CamPhotoShot; // Camera photo trigger signal
volatile boolean CamRec; //Camera record function toggle
volatile boolean LEDHdlts; //LED headlights on/off toggle

Yi

//give a name to the group of data
RECEIVE_DATA STRUCTURE rxdata;
SEND_ DATA STRUCTURE txdata;

void setup()
{
ps2x.config gamepad(13,11,10,12, false, false);
//setup pins and settings: GamePad(clock, command, attention, data,
Pressures?, Rumble?)
//We have disabled the pressure sensitivity and rumble in this instance and
//we know the controller type so we have not bothered with the error checks
pinMode (grnLEDpin, OUTPUT); //Sets the grnLEDpin to output

pinMode (redLEDpin, OUTPUT); //Sets the redLEDpin to output

pinMode (yelLEDpin, OUTPUT); //Sets the yelLEDpin to output.

pinMode (VwarnLEDpin, OUTPUT); //Sets the low voltage warning pin to output

pinMode (TwarnLEDpin, OUTPUT); //Sets the overtemperature warning pin to
output.

txdata.CamRec = false; //Sets the Camera default to not recording

txdata.CamPhotoShot = false; //Sets the Camera default to no phototaken
txdata.CamPitch =90; //Sets the Camera Pitch to be level

lcd.begin(16, 2);

lcd.clear(); //make sure screen is clear.

lcd.setCursor(0,0); //Move cursor to top left corner
led.print("Initialising");

delay(10000); //The 10 second delay to allow opportunity to upload new
programs.

Serial.begin(9600); //Begin Serial to talk to the Slave Arduino

ETin.begin(details(rxdata), &Serial); //Get the Easy Transfer Library
happening through the Serial

ETout.begin(details(txdata), &Serial);

lcd.clear(); //make sure screen is clear again.

lcd.setCursor(0,0); //Move cursor to top left corner

lcd.print("Ready");

}

void loop()
{

ps2x.read gamepad(); //This needs to be called at least once a second
// to get data from the controller.

if (ps2x.Button(PSB_PAD UP)) //Pressed and held

{ txdata.CamPitch = txdata.CamPitch + 2; //increase the camera pitch

}

if (ps2x.ButtonPressed(PSB_PAD LEFT)) //Pressed

{ txdata.LEDHd1lts = !txdata.LEDHdlts; //Toggle the LED light flag

}

if (ps2x.Button(PSB_PAD DOWN)) //Pressed and Held

{ txdata.CamPitch = txdata.CamPitch - 2; //decrease the camera pitch
ixdata.CamPitch = constrain(txdata.CamPitch,20,160); //Constrain the camera

pitch

//to within range servo can handle.

if (ps2x.Button(PSB_PAD RIGHT)) //Pressed and Held
{
DispOpt = DispOpt + 1; //step through the data to display.
if(DispOpt == 2) //At the moment there are only two items of
//data to display. This will need to be changed as extra data is added
//This just resets the data to be displayed to the start of the list.

{
DispOpt = 0;

}
}
if (ps2x.ButtonPressed(PSB_GREEN)) //Triangle pressed
{

txdata.CamRec = !txdata.CamRec; //Toggle the Camera recording Status
}
if (ps2x.ButtonPressed(PSB_RED)) //Circle pressed
{

txdata.CamPhotoShot = true; //Set to indicate photo shot taken.
}

//Analogue Stick readings
ForwardvVal = ps2x.Analog(PSS_RY);
YawLeftVal = ps2x.Analog(PSS_RX);
Upval = ps2x.Analog(PSS_LY);
RollLeftVal = ps2x.Analog(PSS_LX);

//Translate the Stick readings to servo instructions
//Readings from PS2 Controller Sticks are from 0 to 255
//with the neutral being 128. The zero positions are to
//the left for X-axis movements and up for Y-axis movements.

//Variables to carry the actual raw data for the ESCs

txdata.upLraw = (128-UpVal)-(128-RollLeftVval)/2; //This will be up to a value
of 192

txdata.upRraw = (128-UpVal)+(1l28-RollLeftVval)/2; //This will be up to a value
of 192

txdata.HLraw
value of 256

txdata.HRraw
value of 256

-(l28-Forwardval)+(128-YawLeftVal); //This will be up to a

-(128-Forwardval)-(128-YawLeftval); //This will be up to a

//Scale the values to be suitable for ESCs and Servos

// These values will be able to be written directly to the ESCs and Servos
txdata.upLraw=map(txdata.upLraw,-193,193,0,179);
txdata.upRraw=map(txdata.upRraw,-193,198,0,179);
txdata.HLraw=map(txdata.HLraw,-256,256,0,179);
txdata.HRraw=map(txdata.HRraw,-256,256,0,179);

// Send the message to the serial port for the ROV Arduino
ETout.sendData();

//Based on Bill Porter's example for the Two Way Easy Transfer Library
//We will include a loop here to make sure the receive part of the
//process runs smoothly.

for(int i=0; i<5; i++){
ETin.receiveData();

if (rxdata.BattVolt < LowBatVoltsl0) //The factor of 10 is included to
// match the factor of 10 used in the reported value which is an int
multiplied
//by 10 to give 0.1 precision to the value. Make sense?
{
digitalWrite(VwarnLEDpin,HIGH); //If the battery voltage too low,
//trigger the warning LED
}

else
{
digitalWrite(VwarnLEDpin,LOW); //Otherwise if voltage above the
//defined low voltage threshhold
//leave the LED off.

}
ROVTMP = (rxdata.ROVTemp * 0.004882814-0.5)*100; //converts the 0-1024
//data value into
temperature.
if (ROVTMP > 50)
{

digitalWrite(TwarnLEDpin,HIGH); //If the Interior temp too high (over 50
degC),
//trigger the warning LED

}
else
{
digitalWrite(TwarnLEDpin,LOW); //Otherwise if interior temperature within
the
//acceptable level, leave the LED off.
}
if (DispOpt == 1)
{
lcd.clear(); //A nice clean screen with no remnants from previous
//messages.
lcd.setCursor(0,0); //Top left hand corner
lcd.print ("ROV Volts:");
lcd.setCursor(0,1); //Bottom left corner
lcd.print ("ROV Temp:");
lcd.setCursor(11,0);
lcd.print(float(rxdata.Battvolt)/10,1); //factor of 10 used to get
//extra precision from Integer value and then displayed to 1 decimal
place.
lcd.setCursor(11,1);
lcd.print (ROVTMP); // Display the ROV temperature
}
else
{

lcd.clear(); //A nice clean screen with no remnants from previous
//messages. lcd.setCursor(0,0); //Top left hand corner

lcd.print("Depth:");

lcd.setCursor(0,1); //Bottom left corner

lcd.print("Heading:");

lcd.setCursor(11,0);

lcd.print(rxdata.ROVDepth); //Display ROV depth in metres

lcd.setCursor(1l1l,1);

lcd.print(rxdata.ROVHDG); //Display ROV heading in degrees.

}
delay(18);

}

// Signalling the probable status of the camera using LEDs.

if (txdata.CamPhotoShot &
{

& !PhotoActive)

PhotoSignalRunTime = millis(); //Set the start time for the signal

digitalWrite(grnLEDpin,HIGH);

PhotoActive = true; //record that the photo has been triggered

}

if (txdata.CamPhotoShot && PhotoActive && millis() - PhotoSignalRunTime > 2000)

//See if the trigger

// signal has been running for two seconds

{
digitalWrite(grnLEDpin
txdata.CamPhotoShot =
PhotoActive = false;

}

,LOW) ;
false;

//Set the camera trigger to off

// record that the photosignal has finished.

digitalWrite(redLEDpin,txdata.CamRec); //Light the redLED based on camera

recording status flag

digitalWrite(yelLEDpin,txdata.LEDHdlts); //Light the LED based on headlights

status flag
delay(18);

ROV Arduino Sketch - aka the "Slave"

Again the ROV sketch uses Bill Porter's EasyTransfer library, but other than that it is fairly straightforward.
Hopefully the comments will explain it all.

/*

ROVPS2Control Slavev8.ino
Hamish Trolove - 30 March
www . techmonkeybusiness.com

2016

This sketch takes commands sent to it from the Master unit with

the PS2 Controller attached and converts it to motor commands,

servo commands, light controls etc. The data is sent from

the handset (Master) to the ROV(Slave) using Bill Porter's EasyTransfer
Library over a 9600 baud serial link (100m tether).

The MS5803 14 library is from Luke Miller http://github.com/millerlp

Data sent from the Master are raw settings for the ESC control.

This sketch is designed for an Arduino Nano with only one Serial Port.

The pin assignments are;
D13 = RED LED pin.

D12 = Headlight Control
D11 = Jumper pin

D8 = ESC Vertical Left

D7 = ESC Vertical Right
D6 = ESC Horizontal Left
D5 = ESC Horizontal Right

D4 = Camera Pitch Servo
D3 = Video Trigger
D2 = Photo Trigger

A7 = Voltage Divider connection
A6 = TMP36 temperature sensor output pin

i2c bus
GND pins
Vcc pins
SDA pins
SCL pins

5V = Supply

on MS5803-14BA
on MS5803-14BA
on MS5803-14BA
on MS5803-14BA

Communications

Serial Connection: Topside D1
Serial Connection: Topside DO
Connect the GND on both

and BMP180
and BMP180
and BMP180
and BMP180

sensors
sensors
sensors
sensors

to
to
to
to

to the TMP36 temperature sensor.

(TX) to ROV DO
(RX) to ROV D1

Please note that the ESCs will all have been
point in the project.

The onboard voltage, heading, depth,

Nano GND pin
Nano 3.3V pin
Nano A4 pin
Nano A5 pin

(RX)
(TX)

programmed by this

and internal temperature

data is sent through the Serial 1link back to the Master
for display on a 16x2 LCD screen.

The heading is from an HMC5883L Digital Compass (i2c address O0x1E)
and the depth from a MS5803-14BA high pressure sensor (i2c address 0x76)

See also: HoryzonTrigger.ino, ROVPS2Control Masterv0.ino,
ROVDoNothing.ino, ROVSubBv0.ino, DigitalCompassv2.ino,
PTLoggerv4.ino and TMP36 Temperature Sensor.ino.

*/

#include
#include
#include
#include

EasyTransfer ETin, ETout;

MS_5803 s

<Wire.h>
<Servo.h

//i2c library for the digital compass and depth sensor

>

<EasyTransfer.h> // Bill Porter's Easy Transfer Library
<MS5803_14.h> //Library for the MS5803-14BA

ensor =

Servo ESCVL; //
Servo ESCVR; //

Servo ESC
Servo ESC

HL; //
HR; //

Servo CamAng; //

const int
const int
const int
const int

const int

const byte hmc5883ModeRegister

RedLEDp
HeadLts
CamRecT
CamPhot

//Create the two Easy transfer Objects for

// Two way communication

MS 5803(512);

Create
Create
Create
Create
Create

in =
= 12
rig =
Trig =

1
7

3

3

hmc5883Address

Servo Object ESC Vertical Left

Servo Object ESC Vertical Right

Servo Object ESC Horizontal Left

Servo Object ESC Horizontal Right

Servo Object for the Camera Pitch Servo.

// The indicator LED pin is 13.

//Camera video recorder trigger is on pin D3

// The Headlight Control is on pin 12
7
2

; //Camera photo trigger is on pin D2

= 0x1lE; //0011110b,

0x02;

I2C 7bit address for compass

const byte hmcContinuousMode = 0x00;
const byte hmcDataOutputXMSBAddress = 0x03;

volatile boolean CamRecd; //Camera record function toggle
volatile boolean CamPhoto; //Camera photo function toggle

const int Voltpin = A7; // analogue pin used to read the battery voltage
const int Temppin = A6; // analogue pin used to read the TMP36 Temp sensor
//Analogue pins A4 and A5 are taken by the i2c bus.

int volts; // variable to read the voltage from the analog pin
int x,y,z; //triple axis data for the digital compass.
int angle; //calculated horizontal heading angle.

float MS5803Press; //Pressure from the MS5803 Sensor.
float MS5803Temp; //Temperature from the MS5803 Sensor.

const float RefVolts = 5.0; // 5-Volt board reference voltage on Nano

const float ResistFactor = 319.68; //Calculated from 1023.0%(R2/(R1 + R2)
//where R1 = 2200 ohms and R2 = 1000 ohms for a 15V max voltage.

long TriggerHoldTm = 0; // the time since the camera button was triggered

long TriggerHoldDuration = 150; //The time in milliseconds to hold the camera

triggers LOW.

struct RECEIVE DATA STRUCTURE{
int upLraw; //Variables to carry the actual raw data for the ESCs
int upRraw;
int HLraw;
int HRraw;
int CamPitch; //Angle of the camera servo.
volatile boolean CamPhotoShot; // Camera photo trigger signal
volatile boolean CamRec; //Camera record function toggle
volatile boolean LEDHdlts; //LED headlights on/off toggle

struct SEND_DATA STRUCTURE{
int BattVolt; //Battery Voltage message to the Master.
int ROVTemp; //ROV interior temperature back to Master
int ROVDepth; //ROV depth reading (m)
int ROVHDG; //ROV direction (Degrees)

Yi

//give a name to the group of data
RECEIVE_ DATA STRUCTURE rxdata;
SEND_DATA_ STRUCTURE txdata;

void setup()

{
pinMode (RedLEDpin, OUTPUT) ;
pinMode (HeadLts,OUTPUT) ;
pinMode (CamRecTrig,OUTPUT) ;
pinMode (CamPhotTrig, OUTPUT);

digitalWrite(HeadLts, LOW); //Set the Headlights to Off

CamRecd = false; //Sets the Camera default to not recording

CamPhoto = false; // No photos triggered.
digitalWrite(RedLEDpin,LOW) ;

digitalWrite(CamRecTrig,HIGH); //Both camera functions are controlled

digitalWrite(CamPhotTrig,HIGH); // by making the pin low.

ESCVL.attach(8,600,2250); //attach the ESCVL to pin
ESCVR.attach(7,600,2250); //attach the ESCVR to pin
ESCHL.attach(6,600,2250); //attach the ESCHL to pin
ESCHR.attach(5,600,2250); //attach the ESCHR to pin 5
//Due to problems with the ESC recognising the maximum
//position at the default settings, the figures after
//the pin number are the microsecond signals for the
//minimum and maximum that the ESC will recognise.
// 600 and 2250 work.
CamAng.attach(4); //Attach the camera Pitch Servo to pin 4

A J ©

// throttle = 90; //Set throttle to the neutral position.
ESCVL.write(90); //Set the ESCVL signal to the neutral position.
ESCVR.write(90); //Set the ESCVL signal to the neutral position.
ESCHL.write(90); //Set the ESCVL signal to the neutral position.
ESCHR.write(90); //Set the ESCVL signal to the neutral position.
CamAng.write(90); //Set the camera servo pitch to be level.

Wire.begin(); // Start the i2c communication

//Initialise the Digital Compass

Wire.beginTransmission(hmc5883Address); //Begin communication with compass
Wire.write(hmc5883ModeRegister); //select the mode register
Wire.write(hmcContinuousMode); //continuous measurement mode
Wire.endTransmission();

// Initialize the MS5803 sensor.
sensor.initializeMS 5803();

delay(10000); //Ten second delay
//The ESC should now be initialised and ready to run.

Serial.begin(9600); //Begin Serial to talk to the Master Arduino

ETin.begin(details(rxdata), &Serial); //Get the Easy Transfer Library
happening through the Serial

ETout.begin(details(txdata), &Serial);

//The camera starts in record mode probably due to Arduino startup signals
//and so this needs to be stopped. The sequence below sends a toggle to
//the camera to stop it from recording. obviously this will leave a small
//waste video file, but we will need to live with that.

digitalWrite(CamRecTrig,LOW); //Trip the photo trigger.
delay(100);
digitalWrite(CamRecTrig,HIGH) ;

}

void loop()

{
// Send the message to the serial port for the ROV Arduino
ETout.sendData();

//Based on Bill Porter's example for the Two Way Easy Transfer Library
//We will include a loop here to make sure the receive part of the
//process runs smoothly.

for(int i=0; i<5; i++){

ETin.receiveData();
// We'll do something properly with the returned data at a later s

ESCVL.write(rxdata.upLraw); //Set the ESCVL signal to the defined throttle
position.

ESCVR.write(rxdata.upRraw); //Set the ESCVR signal to the defined throttle
position.

ESCHL.write(rxdata.HLraw); //Set the ESCHL signal to the defined throttle
position.

ESCHR.write(rxdata.HRraw); //Set the ESCHR signal to the defined throttle
position.

CamAng.write(rxdata.CamPitch); //Set the camera servo pitch to the defined
angle.

digitalWrite(HeadLts,rxdata.LEDHdlts);//Light the headlights based on the
Message data
delay(18);
}

//The camera settings are status flags so we will need to trigger the events

based on
//changes in the data.
if(rxdata.CamRec && !CamRecd) //If the signal is to trigger video recording
//and the Camera is not already triggered drop the camera recording pin to
LOW.

{
CamRecTrigger(); //Run the camera triggering signal

CamRecd = true; //update the flag.

}
if (!rxdata.CamRec && CamRecd) //If the camera no longer needing to trigger

// then signal the camera and turn off the flag.

{
CamRecTrigger(); //Run the camera triggering signal

CamRecd = false; //update the flag.
}

if (rxdata.CamPhotoShot && !CamPhoto) //If the camera is required to fire a

shot trigger
// the camera photo pin.

{
digitalWrite(CamPhotTrig,LOW); //Trip the photo trigger pin.

TriggerHoldTm = millis(); //Reset the time that a camera trigger was used.
CamPhoto = true; //update the flag.
}

if (!rxdata.CamPhotoShot && CamPhoto) //If the camera photo signal ceases
// reset the camera flag.

{
CamPhoto = false; //update the flag.
}
if(millis() - TriggerHoldTm > TriggerHoldDuration) //If camera button held

long enough release it.
// hopefully this little routine will speed up the sketch processing.

{
digitalWrite(CamRecTrig,HIGH);

digitalWrite(CamPhotTrig,HIGH); //Just make them both inactive

delay(18); //This delay is added to give the ROV a chance to

//return data
volts = analogRead(Voltpin)/ResistFactor*RefVolts*10; //Read the voltage
//from the battery through the voltage divider. Factor of 10 used
//to help achieve an integer with 0.1V accuracy.
txdata.BattVolt = volts; //Send back the onboard battery voltage.
txdata.ROVTemp=analogRead (Temppin); //This reads the pin keeps it as a 0-1024
value.

//Read the digital compass

//Tell the HMC5883L where to begin reading the data
Wire.beginTransmission(hmc5883Address);
Wire.write(hmcDataOutputXMSBAddress); //Select register 3, X MSB register
Wire.endTransmission();

//Read data from each axis
Wire.requestFrom(hmc5883Address,6);
if(6<=Wire.available())

{
X = Wire.read()<<8; //X msb
X |= Wire.read(); //X 1lsb
z = Wire.read()<<8; //%Z msb
z |= Wire.read(); //Z lsb
y = Wire.read()<<8; //Y msb
y |= Wire.read(); //Y 1lsb

}

angle = atan2(-y,x)/M PI*180;
if (angle < 0)
{

angle = angle + 360;

}
txdata.ROVHDG = angle; //ROV direction (Degrees)

//Reading and MS5803-14BA Sensor

// Use readSensor() function to get pressure and temperature reading from the
MS5803.

sensor.readSensor();

MS5803Press = sensor.pressure(); //Pressure in mbar absolute

MS5803Temp = sensor.temperature(); //Although we have gathered this

//it won't be used at this stage.

txdata.ROVDepth = (MS5803Press-1013)/98.1; //ROV depth reading (m)

void CamRecTrigger ()

{
digitalWrite(CamRecTrig,LOW); //Trip the recorder toggle.
TriggerHoldTm = millis(); //Reset the time that a camera trigger was used.

WAL C IO K8V OUSNesSS, Cor

http://www.techmonkeybusiness.com/

	Controlling the ROV
	Topside Station Circuits
	The Motherboard.
	The Display Board

	The ROV Circuits.
	The Sketches
	Topside Arduino Sketch - aka the "Master"
	ROV Arduino Sketch - aka the "Slave"

