An LM317 Calculator and Python Deployment

One of the things | have been looking at with some trepidation is deployment of programs written in python
as packages that can be run on different machines that don't necessarily have python installed. In my
investigations the two tools that most people seem to use are cx_Freeze (https://anthony-
tuininga.github.io/cx_Freeze/) and, for Windows, py2exe (http://www.py2exe.org/). Ultimately | am looking
to package a Pygame / Tkinter project with a bunch of resources such as images, sound files, and text files.
To get to grips with the deployment tools | decided to write a small Tkinter tool for calculating the resistance
and voltage values for the LM317 voltage regulator. To make it a little more challenging | wanted to include a
full colour image in the interface. What | ended up with was a nice little calculator that | thought would be
worthwhile sharing.

| took the calculation formula and basic variable voltage regulator circuit diagram from the Texas Instrument
LM317 datasheet (http://www.ti.com/lit/ds/symlink/Im317.pdf see page 10). The circuit diagram layout has
been rejigged a little obviously, and some of the ripple control components removed.

Vin

¥

vour Vout
R1
—Li R [7]2 1 1pF
R2

GND

&

The formula given in the datasheet is:

R
1+—2

1

V,=V +I R,

ref adj

where:
* Vois the output voltage
e Vrefis 1.25V
* R1and R2 are the two resistors shown on the diagram
* ladj is the current through the ADJ leg of the regulator and is very small — typically 50pA.

Although the last term in the expression is very small, | decided to make the calculator a little bit more
accurate by including it. This also meant my calculator required an iterator for calculating R2.

https://anthony-tuininga.github.io/cx_Freeze/
https://anthony-tuininga.github.io/cx_Freeze/
http://www.ti.com/lit/ds/symlink/lm317.pdf
http://www.py2exe.org/

So here are the formula implemented in the python code;
In the case where resistances R1 and R2 are known the output voltage is calculated by;

R
y—
Rl

V,=V +Iade2

ref

In the case where the target voltage Vo and resistance R1 are known, R2 can be calculated with;

V —I .R
R2:R1(70 v adj 2—1)
ref

R2 appears on both sides and so needed to be iterated to find it. This converges very quickly and typically
took about two or three rounds to settle on a number within 1% of the final value.

In the case where the target voltage Vo and resistance R2 are known, R1 can be calculated using;
R2 Vre
f

R =
' Vo_Iadj R2_ Vref

The Python Code

The Tkinter interface was relatively straight forward to produce with Frames to guide the layout. The nifty bit
was learning of the existence of the Photolmage class in Tkinter which allows any .gif image to be used
where the standard (and very boring) Tkinter images are used. You will notice when you run this that the
radio button follows where you are actively entering data. This was achieved by binding the mouse click
events to an inelegant bunch of functions that updated the variable controlling which radio button was
selected.

A LM317 Calculator
Circuit Schematic

x
O
o

Vin
Vout
= 0. 14F
GND
Daka Imput T
~violtage and R1 Known — ——Valtage and R2 Known— A1 and R2 Known- 4
Target Voltage Target Voltage A1 {ohms)
R1 {ohms) || R {ghms) A2 {ohms]
The Answer ;
| Go | Close i

One quirk is that the values you might have used in some fields don't clear if you move onto entering values
into another section of the calculator. Not that this is a problem because it means you can click on the radio

button for that section and reactivate those values.

Quirks aside, the script was really built to test deployment python code.

The code was written in Python 2.7. If you want to run it in Python 3.X just change the
import Tkinter as tk

to

import tkinter as tk

and it will work for you.

You can download the python code and resources here:
http://www.techmonkeybusiness.com/Code/LM317Calcv3.zip

The Code Listing

LM317Calcv3.py

This is a tKinter based calculator to calculate the resistances and output
voltages when using

LM317 voltage regulators. All calculations based on those in the Texas
Instruments LM317 datasheet.

This will be used to testing deployment methods in Linux and Windows

V0 sucessfully outputs correct answers to the terminal

V1 Outputs to the Answer box

V2 Puts a colour image in the Top section using the tkinter PhotoImage class
V3 Says to hell with it, lets do this properly and include the Iadj term as
well for more accuracy

HH H H H

The tool was written in python 2.7

Program by Hamish Trolove - www techmonkeybusiness.com

You are free to distribute it but cannot charge for it. Creative Common 4.0
by-nc-sa type thing.

No responsibility taken for use of this tool. After all it was written to

test python code
deployment methods rather than make the ultimate LM317 calculator.

import Tkinter as tk
import os

class Calculator:
InitialPath = os.getcwd()

def init (self):
Homepath = Calculator.InitialPath

self.CalcWin = tk.Tk()
self.CalcWin.wm title("LM317 Calculator") #Allows us to add text to
the Tkinter window title

Imagefile = os.path.join(Homepath, "resources","LM317Circuit.gif")
CircuitPic = tk.PhotoImage(file=Imagefile)

http://www.techmonkeybusiness.com/Code/LM317Calcv3.zip

self.Areal = tk.LabelFrame(self.CalcWin, text="Circuit Schematic") #
Frame to contain the Circuit Image
self.Areal.pack()

self.Area2 = tk.LabelFrame(self.CalcWin, text="Data Input") # Frame to

contain the Circuit Image
self.Area2.pack()

self.SubAreal = tk.LabelFrame(self.Area2, text="Voltage and R1 Known")
Frame to contain the Output Voltage and R1
self.SubAreal.grid(row =0 , column =0)

self.SubArea2 = tk.LabelFrame(self.Area2, text="Voltage and R2 Known")
Frame to contain the Output voltage and R2
self.SubArea2.grid(row =0 , column =1)

self.SubArea3 = tk.LabelFrame(self.Area2, text="R1l and R2 Known") #
Frame to contain the data for rl and r2
self.SubArea3.grid(row =0 , column =2)

self.Area3 = tk.LabelFrame(self.CalcWin, text="The Answer") # Frame to

contain the Calculation output
self.Area3.pack()

#The Circuit diagram box
self.ImageLabel = tk.Label(self.Areal, image = CircuitPic).pack()

#Radio button arrangement

self.CalcTypeSel = tk.IntVar()

self.CalcTypeSel.set(1l) #Preset the radio button selection

self.CalcTypeVRl = tk.Radiobutton(self.SubAreal, variable =
self.CalcTypeSel, value = 1).grid(row=0, column=0)

self.CalcTypeVR2 tk.Radiobutton(self.SubArea2, variable =
self.CalcTypeSel, value = 2).grid(row=0, column=0)

self.CalcTypeR1R2 = tk.Radiobutton(self.SubArea3, variable =
self.CalcTypeSel, value = 3).grid(row=0, column=0)

#Entry boxes for data input target voltage and R1 values

self.VoltsAOutvVal = tk.StringVar()

self.VoltALabel = tk.Label(self.SubAreal, text = "Target
Voltage").grid(row = 1, column = 0)

self.VoltAEntry = tk.Entry(self.SubAreal, textvariable =
self.VoltsAOutVal)

self.VoltAEntry.bind("<Button-1>",self.UpdateRadioPointl) #Have the
radio button follow action

self.VoltAEntry.grid(row = 1, column = 1)

self.R1AVal = tk.StringVar()

self .R1ALabel = tk.Label(self.SubAreal, text = "Rl (ohms)").grid(row
2, column = 0)

self .R1AEntry = tk.Entry(self.SubAreal, textvariable = self.R1AvVal)

self .R1AEntry.bind("<Button-1>",self.UpdateRadioPointl) #Have the radio

button follow action
self .R1AEntry.grid(row = 2, column = 1)

#Entry boxes for Data input target voltage and R2 values
self.VoltsBOutvVal = tk.StringVar()

self.VoltBLabel = tk.Label(self.SubArea2, text = "Target
Voltage").grid(row = 1, column = 0)

self.VoltBEntry = tk.Entry(self.SubArea2, textvariable =
self.VoltsBOutVal)

self.VoltBEntry.bind("<Button-1>",self.UpdateRadioPoint2) #Have the
radio button follow action

self.VoltBEntry.grid(row = 1, column = 1)

self.R2BVal = tk.StringVar()

self.R2BLabel = tk.Label(self.SubArea2, text = "R2 (ohms)").grid(row =
2, column = 0)

self.R2BEntry = tk.Entry(self.SubArea2, textvariable = self.R2BVal)

self.R2BEntry.bind("<Button-1>",self.UpdateRadioPoint2) #Have the radio
button follow action

self .R2BEntry.grid(row = 2, column = 1)

#Entry Boxes for Data input R1 and R2

self.R1CVal = tk.StringVar()

self.R1CLabel = tk.Label(self.SubArea3, text = "Rl (ohms)").grid(row =
1, column = 0)

self .RICEntry = tk.Entry(self.SubArea3, textvariable = self.R1CVal)

self .RICEntry.bind("<Button-1>",self.UpdateRadioPoint3) #Have the radio
button follow action

self.RI1ICEntry.grid(row = 1, column = 1)

self.R2CVal = tk.StringVar()

self.R2CLabel = tk.Label(self.SubArea3, text = "R2 (ohms)").grid(row =
2, column = 0)

self .R2CEntry = tk.Entry(self.SubArea3, textvariable = self.R2CVal)

self .R2CEntry.bind("<Button-1>",self.UpdateRadioPoint3) #Have the radio
button follow action

self .R2CEntry.grid(row = 2, column = 1)

#Calculation output

self.CalcOutNote = tk.StringVar()

self.CalcOutMess = tk.Message(self.Area3, textvariable =
self.CalcOutNote, bg = "#bébcdb", relief = tk.SUNKEN, width = 420).grid(row =
0, column = 0)

self.CalcGoButtn = tk.Button(self.Area3, text="Go")

self.CalcGoButtn.bind("<Button-1>",self.DoCalc) #The number being
passed is the ID for this dialogue

self.CalcGoButtn.bind("<Return>",self.DoCalc)

self.CalcGoButtn.grid(row = 0, column = 1)

self.CalcCancel = tk.Button(self.Area3, command=self.CloseDown)
self.CalcCancel["text"]= "Close"
self.CalcCancel.grid(row = 0, column = 2)

self.CalcWin.mainloop() #Keep this going until we quit out.

def DoCalc(self,event=None):
CalcID = self.CalcTypeSel.get()
Vref = 1.25
Iadj 50*10**-6

#Gather data
if CalcID == 1:
Volts = self.VoltsAOutVal.get()

Resl = self.R1AVal.get()
#The following prevents the scrift from failing if junk text is
added to the inputs
try:
V = float(Volts)
R1 = float(Resl)
except:
return

#For R2 we need to iterate

R201d = 20 #Iterator startoff values
R2 = 100

R2DiffRat = 3

while R2DiffRat > 0.01:
R201d = R2
R2 = R1*((V-Iadj*R201d)/Vref - 1)
R2DiffRat = abs(R2 - R201d)/R2

Textreturn = "The Value of R2 is: {:.0f} Ohms".format(R2)
self.CalcOutNote.set (Textreturn)

elif CalcID ==2:
Volts = self.VoltsBOutVal.get()
Res2 =self.R2BVal.get()
try:
V = float(Volts)
R2 = float(Res2)
except:
return

R1 = R2*Vref/(V-Iadj*R2-Vref)
Textreturn = "The Value of R1 is: {:.0f} Ohms".format(R1)
self.CalcOutNote.set (Textreturn)

else:
Resl
Res?2

self.R1CVal.get()
self.R2CVal.get()

try:
R1 = float(Resl)
R2 float (Res2)
except:
return
V = Vref*(1+R2/R1)+Iadj*R2
Textreturn = "The Output Voltage is: {:.2f} V".format (V)
self.CalcOutNote.set (Textreturn)

def CloseDown(self):
self.CalcWin.destroy ()

def UpdateRadioPointl(self, event = None):
self.CalcTypeSel.set(1l) #Put the Rl V area

def UpdateRadioPoint2(self, event = None):
self.CalcTypeSel.set(2) #Put the R2 V area

def UpdateRadioPoint3(self, event = None):
self.CalcTypeSel.set(3) #Put the Rl R2 area

LMCalc = Calculator() #Open the Tkinter window here.

Deployment

So that's the LM317 calculator coding. To deploy the code | used cx_Freeze for the Linux version and
py2exe for the Windows version.

Linux using cx_Freeze

| spent a long time fighting with cx_Freeze. It would compile nicely, but the compiled executable would
always come back with a missing “__setup " module error. Huh? Not one of mine. This was even
happening on the simple demonstration examples included with cx_Freeze. Anyway, in the end | found that
this was a problem with the Linux cx_Freeze and the development community appeared to have solved it
about 11 days beforehand. So following the advice of klensy on the cx_Freeze issues discussion | removed
my existing version of cx_Freeze and pulled a patched version from Github.

pip uninstall cx Freeze
pip install git+https://github.com/anthony-tuininga/cx Freeze.git@v5.x

After copying the resources folder into the built binary folder, | tried the freshly cx_Freezed (cx_Frozen?)
output and it worked perfectly.

You can find the standalone executable as a zipped up file here. LM317Calcv3-Linux.zip
The script used to create this was:

cxFreeze setupLM317Calcv3p2.py
A script to guide cxFreeze to build an executable
on a linux 32 bit installation.

The source file is a calculator incorporating a diagram
a Tkinter interface

#Use the following command to run it.
python cxFreeze setupLM317Calcv3p2.py build

#Once it is done copy the resources folder into the newly created output
directory.

import cx Freeze

from cx Freeze import setup, Executable
import os

import sys

base = None
if sys.platform == 'win32':
base = 'Win32GUI'

Initialdir = os.getcwd()

executables = [cx Freeze.Executable("LM317Calcv3.py", base=base)]
Imagefile = os.path.join(Initialdir,"resources","LM317Circuit.gif")

http://www.techmonkeybusiness.com/Code/LM317Calcv3-Linux.zip
https://github.com/anthony-tuininga/cx_Freeze/issues/209
https://github.com/anthony-tuininga/cx_Freeze/issues/209#issuecomment-331584938

cx Freeze.setup(
name="LM317 Calculator",
options={"build exe": {"packages":["Tkinter",6"os"],
"include files":[Imagefile]}},
executables = executables

)
To build it, | used the following command in the terminal while in the directory where the files were.

python cxFreeze setupLM317Calcv3p2.py build

where the “ cxFreeze setupLM317Calcv3p2.py” is just the name of the setup file above.

Windows using py2exe

Deploying on windows was relatively straightforward (Once my old Windows XP machine had started and |
had installed Python 2.7 and py2exe. Luckily py2exe is distributed as a windows installer. Had it required
Pip, | would have been sunk because that machine has no internet connection. So this was made on a
Windows XP 32-bit machine. How it performs on a Windows 10 or other Microsoft abominations | have no
idea.

Like cx_Freeze | needed to write a setup script. | pretty much just pinched the example one from the py2exe
library. Py2exe is smart enough to figure everything else out.

#setupp2e.py
from distutils.core import setup
import py2exe

#Run this with the command "python setupp2e.py py2exe"
#Copy the resources directory across to the output folder once it has been
created

executables "LM317Calcv3.py"

setup (
version "3,
description = "LM317 Calculator",
name = "LM317 Calculator",

targets to build
console = [executables],

)
| navigated to the working directory in the command line thing and used the following command to start the
process.
python setupp2e.py py2exe
where setupp2e.py was just the name of my setup script.
So that churned it around for a bit and produced a new directly called dist. | copied the resources folder
with the image into it and ran it. It worked fine. It also worked under Wine although was pretty slow to start

when compared to the Linux native version.

So here is the Windows executable. LM317Calcv3-Windows.zip

Just unzip this where you like and look for the LM317Calcv3.exe file.
www.techmonkeybusiness.com =X

http://www.techmonkeybusiness.com/
http://www.techmonkeybusiness.com/Code/LM317Calcv3-Windows.zip

	The Python Code
	The Code Listing

	Deployment
	Linux using cx_Freeze

	Windows using py2exe

