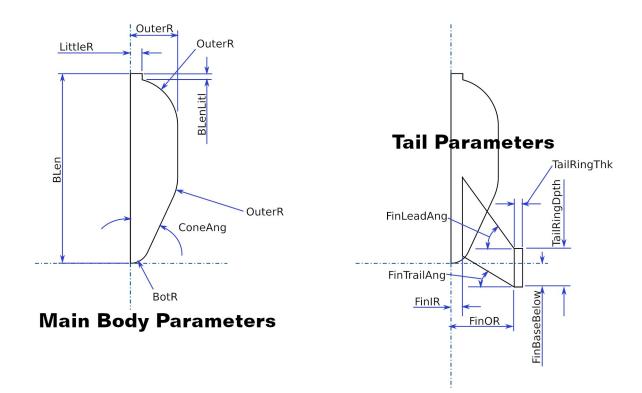
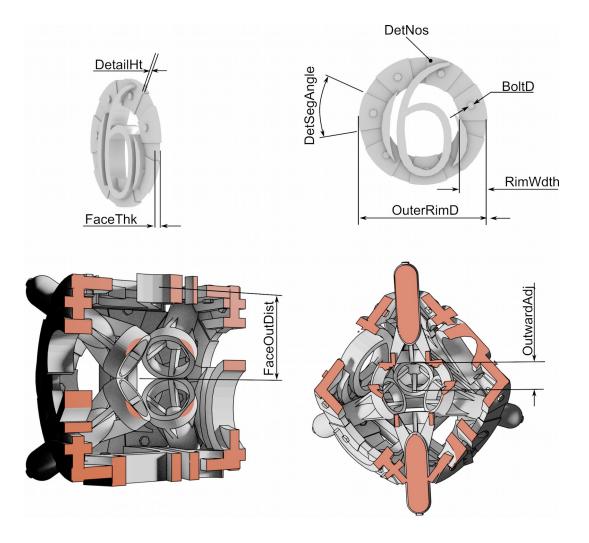

Parametric Bomb Dice Using CADQuery

I have been keen to try my hand at parametric models using <u>CADQuery</u>. I felt a good test would be to translate the <u>OpenSCAD Bomb Dice</u> into CADQuery.


What surprised me was how much more tricky it would be. OpenSCAD has some rather nice features which I make heavy use of in my designs, namely **Convex Hulls**. At the time of this project the latest edition of CADQuery had introduced convex hulls as a function for 2D sketches. Unfortunately there were problems trying to use it and so I had to fall back on an older edition bundled with the <u>CQ-Editor</u> and create the shape outlines in a more manual fashion. So no nice easy shortcuts for me.


Once I got into the swing of creating the 2D shapes it was a powerful technique and yielded excellent outputs. Because 2D shapes formed the basis of most of the model, it became a very different beast from the OpenSCAD model where I could work directly with 3D shapes.

The big advantage of CADQuery over OpenSCAD was its ability to output STEP format models. This opened it to a greater number of Engineering Application, especially here in New Zealand where CNC Machinist insist on working with STEP files. Of course the other major advantage is having the scripting might of python behind it.

Bomb Dice Parameters

RenderYN	Setting this to "yes" will output the two model files BombDiceD6v0.step and BombDiceD6v0.stI into the directory where you've placed the BombDiceD6v0.py script.
Bomb shape Parameters (refer to the diagrams below)	
LittleR	The radius of the little tip bit of the bomb
OuterR	The overall radius of the bomb's main shell. This is also used for the radius of the other main hemispherical surfaces
BLen	The overall length of the bomb's main body
BotR	The radius of the rounded hemisphere on the tail end of the main bomb body
BLenLitl	The length of the little tip bit at the top of the bomb body
ConeAng	The angle of the bomb body bottom end cone
FinNos	The number of fins
FinThk	The thickness of the fins
FinOR	Outer edge of the fins. This is also used to set the radius of the tail ring
FinIR	Inner edge of the fins
FinBaseBelow	Distance between the bottom-most point of the fins and the bottom-most end of the main bomb body. The bottom edge of the tail ring is in line with this too.
FinLeadAng	Angle of the fin leading edge
FinTrailAng	Angle of the fin trailing edge
TailRingDpth	The length of the tail ring
TailRingThk	The section thickness of the tail ring
OutwardAdj	Radial distance to shift the bomb units outwards
Variables for Face Ring (see diagrams below)	
OuterRimD	Outer rim diameter of the main face ring
RimWdth	Width of the main face ring band
FaceThk	Thickness of the main face ring
DetailHt	Height that the details segments project above the surface of the main ring
DetSegAngle	Angle covered by detail segment
DetNos	Number of detail segments
BoltD	Diameter of the bolt head on the detail segment
FaceOutDist	Distance of the face mid-plane out from the centre of the cube.
Text Parameters	S
Bombfont	The name of any font you have on your system that you want to use.
LettrSiz	The size of the letter
LetHt	The amount the letter is extruded by
LetVPozAdj	A factor to adjust the position of the letter vertically
LetHPozAdj	A factor to adjust the position of the letter horizontally
FaceTXTList	A list of the six text items you want to see on the dice faces. You can put anything in here. The default is the six numbers of a balanced dice ["1","6","3","4","2","5"]

The Code

In a shameless attempt to increase the page count for this article and potentially absorb a few more google hits, here is the listing (just mind the word wrap if copying this from the pdf).

You can download the code from here: **BombDiceD6v0.py**

```
#BombDiceD6v0.py
import cadquery
from cadquery import exporters
from math import sin, cos, tan, pi, acos, atan2
RenderYN = "no" #Render to file (yes/no)?
#Bomb shape Parameters
Lit.t.leR = 1
OuterR = 6
BLen = 40
BotR = 2
BLenLitl = 1.6
ConeAng = 30
FinNos = 4
FinThk = 1
FinOR = 8
FinIR = 1
FinBaseBelow = 4
FinLeadAng = 60
FinTrailAng = 45
TailRingDpth = 8
TailRingThk = 1
OutwardAdj = 15
#Variables for Face Ring
OuterRimD = 50
RimWdth = 8
FaceThk = 2.5
DetailHt = 0.5
DetSegAngle = 35
                     #Angle covered by detail segment
                 #Number of detail segments
DetNos = 7
BoltD = 4
FaceOutDist = 25
Bombfont = "Walshes Outline" #["MetropolitainesD", "ZapfChan Bd BT", "Xtraflexidisc", "Liberation
Sans:style=Italic", "Liberation Mono", "Liberation Serif"]
#"WeddingText BT", "Walshes Outline", "Vertigo Upright BRK", "Vanilla Whale", "Ubiquity BRK", "Top
Bond", "TimeScrDBol", "Stencil", "StayPuft", #"Snap ITC", "Showcard Gothic", "Colonna MT"
LettrSiz = 52
LetHt = 6
LetVPozAdj = 0.00  # A factor to adjust the position of the letter vertically
LethPozAdj = -0.04
FaceTXTList = ["1", "6", "3", "4", "2", "5"]
def BombSpikes():
    BombBody = (cadquery.Workplane("front")
                  .moveTo(0,0)
                   .radiusArc((BotR*cos(ConeAng*pi/180)), BotR*(1-sin(ConeAng*pi/180))), -BotR)
                   .lineTo(OuterR*cos(ConeAng*pi/180),(OuterR-BotR)*(1+1/sin(ConeAng*pi/180))-
OuterR*sin(ConeAng*pi/180))
                   .radiusArc((OuterR, (OuterR-BotR)*(1+1/sin(ConeAng*pi/180))), -OuterR)
                  .lineTo(OuterR,BLen-BLenLitl-(OuterR**2-LittleR**2)**0.5)
                   .radiusArc((LittleR,BLen-BLenLitl), -OuterR)
                   .vLine(BLenLitl)
                  .hLineTo(0)
                   .close()
                  .revolve(360, (0, 1, 0), (0, -1, 0))
    )
```

```
BombFin = (cadquery.Workplane("front")
                                       .moveTo(FinOR,-FinBaseBelow)
                                       .vLine(TailRingDpth)
                                       .lineTo(FinIR, TailRingDpth-FinBaseBelow+(FinOR-FinIR)*tan(FinLeadAng*pi/180))
                                       .vLineTo(FinIR, (FinOR-FinIR) *tan(FinTrailAng*pi/180)-FinBaseBelow)
                                       .extrude(FinThk)
                                       .translate((0,0,-0.5*FinThk))
          FinMass = BombFin
          for FinNo in range (1,FinNos):
                     FinMass = FinMass.union(BombFin.rotate((0,1,0),(0,-1,0),360/FinNos*FinNo))
          BombTail = (cadquery.Workplane("front")
                                          .moveTo(FinOR, -FinBaseBelow)
                                          .rect(TailRingThk, TailRingDpth)
                                          .revolve(360, (0,1,0), (0,-1,0))
                                          .translate((0,0.5*TailRingDpth))
          BombUnit = BombBody.union(FinMass).union(BombTail)
           # Eight Diagonals
          b = acos(1/3**0.5)
          c = atan2(1,1)
          (0,-1,0), c*180/pi)
          Diag2 = BombUnit.translate((0,OutwardAdj,0)).rotate((1,0,0),(-1,0,0),-b*180/pi).rotate((0,1,0),0)
(0,-1,0),c*180/pi)
           \label{eq:decomposition}  \mbox{Diag3} = \mbox{BombUnit.translate((0,OutwardAdj,0)).rotate((1,0,0),(-1,0,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).rotate((0,1,0),-b*180/pi).
(0,-1,0),-c*180/pi)
          Diag4 = BombUnit.translate((0,OutwardAdj,0)).rotate((1,0,0),(-1,0,0),b*180/pi).rotate((0,1,0),b*180/pi).rotate((0,1,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate((0,0),b*180/pi).rotate
(0,-1,0),-c*180/pi)
          DiagSide1 = Diag1.union(Diag2).union(Diag3).union(Diag4)
          DiagSide2 = DiagSide1.rotate((0,0,1),(0,0,-1),180)
          Diags = DiagSide1.union(DiagSide2)
          return(Diags)
def FacePlate():
          BombFacePlate = (cadquery.Workplane("top")
                                                      .moveTo(0.5*(OuterRimD-RimWdth),0)
                                                        .rect(RimWdth, FaceThk, centered=True)
                                                       .revolve(360,(0,1,0),(0,-1,0))
          )
          BombFaceDetail = (cadquery.Workplane("top")
                                                        .moveTo(0.5*(OuterRimD-RimWdth),0)
                                                        .rect(RimWdth+2*DetailHt,FaceThk+2*DetailHt,centered=True)
                                                       .revolve(DetSegAngle, (0,1,0), (0,-1,0))
          FaceBoltDetail = (cadquery.Workplane("top")
                                                          .moveTo(0.5*(OuterRimD-RimWdth)*cos(pi*DetSegAngle/360),0.5*(OuterRimD-
RimWdth) *sin(pi*DetSegAngle/360))
                                                          .polygon(6,BoltD)
                                                          .extrude(FaceThk+4*DetailHt)
                                                          .rotate((-1,0,0),(1,0,0),90)
                                                          .translate((0,0,-0.5*FaceThk-2*DetailHt))
          #Build the FacePlate up from the parts
          BombFaceDetFul = BombFaceDetail.union(FaceBoltDetail)
          BombFaceDetFulMass = BombFaceDetFul
          for DetNo in range (1, DetNos):
                     BombFaceDetFulMass = BombFaceDetFulMass.union(BombFaceDetFul.rotate((0,0,1),(0,0,-1),360/
DetNos*DetNo))
          FaceSingle = BombFacePlate.union(BombFaceDetFulMass)
          return(FaceSingle)
def FaceTXT(TNum):
          BombFaceTXT = (cadquery.Workplane("front")
                                                  .text(TNum,LettrSiz,LetHt,combine = True,font = Bombfont,kind = "regular",halign
= 'center', valign = 'center')
```

```
.translate((LetHPozAdj*LettrSiz,LetVPozAdj*LettrSiz,-0.5*LetHt))
            return (BombFaceTXT)
def ComboFace():
            Face1 = FacePlate().union(FaceTXT(FaceTXTList[0])).translate((0,0,FaceOutDist)).rotate((1,0,0),
(-1,0,0),90)
             \texttt{Face2} = \texttt{FacePlate().union(FaceTXT(FaceTXTList[1])).translate((0,0,FaceOutDist)).rotate((-1,0,0),FaceOutDist)).rotate((-1,0,0),FaceOutDist))} \\ \texttt{Face2} = \texttt{FacePlate().union(FaceTXT(FaceTXTList[1])).translate((0,0,FaceOutDist)).rotate((-1,0,0),FaceOutDist))} \\ \texttt{Face2} = \texttt{FacePlate().union(FaceTXT(FaceTXTList[1])).translate((0,0,FaceTXT(FaceTXTList[1]))} \\ \texttt{Face2} = \texttt{FacePlate().union(FaceTXT(FaceTXTList[1]))} \\ \texttt{Face2} = \texttt{FacePlate().union(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(FaceTXT(Fac
(1,0,0),90)
           Face3 = FacePlate().union(FaceTXT(FaceTXTList[2])).translate((0,0,FaceOutDist)).rotate((0,1,0),
(0, -1, 0), 90)
           Face4 = FacePlate().union(FaceTXT(FaceTXTList[3])).translate((0,0,FaceOutDist)).rotate((0,-1,0),
(0,1,0),90)
            Face5 = FacePlate().union(FaceTXT(FaceTXTList[4])).translate((0,0,FaceOutDist))
             \texttt{Face6} = \texttt{FacePlate().union(FaceTXT(FaceTXTList[5])).translate((0,0,FaceOutDist)).rotate((0,-1,0),FaceOutDist)).} 
(0,1,0),180)
            FacesCombo = Face1.union(Face2).union(Face3).union(Face4).union(Face5).union(Face6)
            return(FacesCombo)
################################
D6BombDice = BombSpikes().union(ComboFace())
show object(D6BombDice)
if RenderYN.lower() == "yes":
            exporters.export(D6BombDice, 'BombDiceD6v0.step')
            exporters.export(D6BombDice, 'BombDiceD6v0.stl')
```

Downloads

And, here's where you can download the CADQuery file. BombDiceD6v0.py

and the bomb dice model in an STL or STEP file formats here;

- The Bomb Dice STEP
- The Bomb Dice STL.

The described project is provided by Hamish Trolove under a <u>Creative Commons Attribution 4.0 International</u> <u>License.</u>

