
Steely Taws – No Quitsies

Quite few years ago I was a volunteer mentor at the Naenae Computer Clubhouse teaching Blender and
general game design. I decided that a good way to teach the Blender Game Engine so that the kids could
produce some really cool games was to make up a game that only used simple logic blocks, and used
modular sections that they could reconfigure into new arrangements and new games. Unfortunately the fact
that teaching Blender and game development could not be taught within their 30 second attention span
meant that nothing became of it.

The game languished in my archives. I dusted it off the other day and got down to designing it as it should
be to make it really playable and that meant moving away form the “simple logic block only” approach and
making use of python scripts and all of the more sophisticate control that allowed. This page describes the
upgraded project and provide downloads of the game.

At this stage the game-play is quite simple, but the essential control elements are all worked out and
contained on a small number of game elements that can be easily transferred to other more sophisticated
games and puzzles. Now that the basic mechanisms have been worked out, I fully intend to create some
more puzzle based games using this.

The Inspiration

A game demo that inspired me greatly at the time was Switchball. At the time I did not have a web-
connected Windows machine and so I was unable to get the full version. Instead I gazed at the screen-shots
that were available and decided to make my own instead. I see now that Switchball and another similar one
called Ballance are both available on Amazon as CDs.

Here are some shots of Switchball I have gathered off the Internet.

http://naenae.computerclubhouse.org.nz/

Pretty cool eh? So that was what inspired me.

Here is how my basic one looks.

At this stage there is no puzzle element, it is simply a drive-around-the-scene-and-try-not-to-fall-off type of
game. The upgraded game was built in Blender 2.58, using the python in the Blender 2.73 API guide, so it
will run happily on later versions of Blender.

Steely Taws – No Quitsies – Wassat mean?
I was struggling to come up with a cool sounding name for this game and the working name Ball Run was
not all that inspiring. My partner suggested that we should see what possibilities existed if we looked up
what Marble Game jargon there was. This was after we ran through some quite rude names; “Care for your
Balls”, “Don't Lose Your Balls”, “Dropped Balls”. So we looked up Wikipedia, and found a heap of really
weird and wonderful Marble game specific terms, among them were;

• Steely – a marble made of metal which wasn't a ball bearing.
• Taws – some Northern English marble playing game.
• No Quitsies – some rule about not being able to quite out of the game or some such thing like that.

All of these sounded good to us, and so the game has become “Steely Taws – no Quitsies”.

Downloads
For the impatient, here are the download links for the game.

The Blender file and texture files. You will be able to access the models and reconfigure them to your
heart's content.
Download the Blender file and textures here.

A Windows Executable version.
A Windows exe version is available for download from Box.net. Just download the zip file, create a new
directory and unzip it into that. The .exe in the directory will start the game. It has been tested in Windows
XP. The download is about 24Mb. Download it from here.

The basic elements of the game are; a ramp, a curved deck, a straight deck, a four way intersection deck, a
deck that drops between levels, and a couple of decks with rails which you can fall off. Here is a collage of
the components.

http://www.techmonkeybusiness.com/models/BallRunv4_Blender.zip
https://app.box.com/s/0bg1ip2it8bwf6qd2hr819ute5ntk75y

Controls
The game is purely based on applying forces on the ball and so the controls are very simple.

Getting the same started.
Assuming you have downloaded the Blender file and Textures rather than the executable, you will need to
switch to the Blender Game Engine as the renderer, turn on the Textured View, configure the game for GLSL
materials, and make the active view from the camera (numeric Keypad “0”). Maximise the window and hit
“p” to start the game. If you are new to Blender as a game engine, your window should look like this when
you are ready to maximise the window and start the game.

http://www.techmonkeybusiness.com/models/BallRunv4_Blender.zip

Keyboard
The keyboard controls are just the cursor arrow keys. All controls are relative to the view and so forward is
away from you, left is to your left etc. This is where the advances are in the new edition of the game. The
previous logic block only game could only be set up to use global directions for the forces and so it was
constantly a battle for the player to adjust their control of the ball to match the changing view.

Thanks to python this is problem is now fixed. A description of the fix is described in the sections below.

Joystick
The new versions of Blender appear to accept Joystick control much better than the old Blender 2.49 that I
was originally using to develop games in. In this new edition, you can use a joystick to control the ball.
Again the controls are view relative.

Game mechanisms.
The following section describes the logic blocks and coding used in this Blender Game Engine physics
based game.

There are only a handful of objects in this game that include any coding and logic blocks. Everything else is
static meshes. This makes it very easy to pull the active parts of the game into other sames that make use
of the same sort of gameplay.

The objects of note are:
• The Ball – has Logic Blocks and python modules attached to it for control.
• The Empty object within the Ball – this is a target for the camera and only has logic blocks.
• The Camera – this has some basic logic blocks to help it track the ball.
• The Restart Plane – there is a plane that resets the player should they fall. This has a few special

properties, logic blocks, and some python code.

The Ball
Obviously the focus of the game is the ball and so it is the most sophisticated of the objects in the game in
terms of control and logic. Because is it a physics based game, all that you do to the ball is apply forces to it.
Because the ball rolls and its local coordinates were tumbling all the time the real challenge was making the
forces view-relative. This mean introducing some python programming to achieve this.

So here is the overview of the logic block side of things. As you can see it was all relatively simple; a set of
inputs either from the keyboard or from the joystick, and a Touch control to ensure the forces could only be
applied when the ball was touching anything. All of these fed to a python module which was used to apply
the forces to the ball.

Here is are the logic blocks expanded to show the content. All of them except the Touch sensor were set to
provide pulses. On the python controllers the screenshot shows the names of the python modules a little
truncated – hopefully when you see the module content it will be fairly self-evident how it works.

The python code for ViewForce.py:

import bge
import mathutils
import math

cont = bge.logic.getCurrentController()
own = cont.owner

#A 90 degree transform matrix about Z looks like
#[0 1 0],[­1,0,0][0,0,1]
mat_rot = mathutils.Matrix(((0,1,0),(­1,0,0),(0,0,1)))

def Push(cont):

 sens = cont.sensors['Push']
 Contact1=cont.sensors['TouchingGnd']

 if sens.positive and Contact1.positive:
 Ball2Cam = own.getVectTo('Camera')
 #print(Ball2Cam)
 Ball2CamVecN=Ball2Cam[1] #pull out the world Vector component
 Ball2CamVecN2D=Ball2CamVecN.to_2d() # This cuts the vector down to just
x and y

 #Normalise the vector back to a Unit vector
 Ball2CamVecN2D= Ball2CamVecN2D.normalized()

 #Add 0 into the z direction part of the vector

 Ball2CamVecN3D=Ball2CamVecN2D.to_3d()
 #print(Ball2CamVecN)
 BallForce = ­10*Ball2CamVecN3D
 own.applyForce(BallForce,False)
 #print(BallForce)

def LShove(cont):

 sens = cont.sensors['LShove']
 Contact1=cont.sensors['TouchingGnd']

 if sens.positive and Contact1.positive:
 Ball2Cam = own.getVectTo('Camera')
 #print(Ball2Cam)
 Ball2CamVecN=Ball2Cam[1] #pull out the world Vector component
 Ball2CamVecN2D=Ball2CamVecN.to_2d() # This cuts the vector down to just
x and y

 #Normalise the vector back to a Unit vector
 Ball2CamVecN2D= Ball2CamVecN2D.normalized()

 #Add 0 into the z direction part of the vector

 Ball2CamVecN3D=Ball2CamVecN2D.to_3d()

 #print(Ball2CamVecN3D)

 #Now make the vector perpendicular
 # around the Z axis, is a 90 degree rotation.

 Ball2CamVecN3D=Ball2CamVecN3D*mat_rot

 BallForce = ­10*Ball2CamVecN3D

 own.applyForce(BallForce,False)

def RShove(cont):

 sens = cont.sensors['RShove']

 Contact1=cont.sensors['TouchingGnd']

 if sens.positive and Contact1.positive:
 Ball2Cam = own.getVectTo('Camera')
 #print(Ball2Cam)
 Ball2CamVecN=Ball2Cam[1] #pull out the world Vector component
 Ball2CamVecN2D=Ball2CamVecN.to_2d() # This cuts the vector down to just
x and y

 #Normalise the vector back to a Unit vector
 Ball2CamVecN2D= Ball2CamVecN2D.normalized()

 #Add 0 into the z direction part of the vector

 Ball2CamVecN3D=Ball2CamVecN2D.to_3d()

 #print(Ball2CamVecN3D)

 #Now make the vector perpendicular
 # around the Z axis, is a 90 degree rotation.

 Ball2CamVecN3D=Ball2CamVecN3D*mat_rot

 BallForce = 10*Ball2CamVecN3D
 own.applyForce(BallForce,False)

def Brakes(cont):

 sens = cont.sensors['Brakes']

 Contact1=cont.sensors['TouchingGnd']

 if sens.positive and Contact1.positive:
 Ball2Cam = own.getVectTo('Camera')
 #print(Ball2Cam)
 Ball2CamVecN=Ball2Cam[1] #pull out the world Vector component
 Ball2CamVecN2D=Ball2CamVecN.to_2d() # This cuts the vector down to just
x and y

 #Normalise the vector back to a Unit vector
 Ball2CamVecN2D= Ball2CamVecN2D.normalized()

 #Add 0 into the z direction part of the vector

 Ball2CamVecN3D=Ball2CamVecN2D.to_3d()
 #print(Ball2CamVecN)
 BallForce = 10*Ball2CamVecN3D
 own.applyForce(BallForce,False)

def JPushBrakes(cont):

 sens = cont.sensors['JPushBrakes']
 Contact1=cont.sensors['TouchingGnd']

 if sens.positive and Contact1.positive:
 Ball2Cam = own.getVectTo('Camera')
 #print(Ball2Cam)
 Ball2CamVecN=Ball2Cam[1] #pull out the world Vector component
 Ball2CamVecN2D=Ball2CamVecN.to_2d() # This cuts the vector down to just
x and y

 #Normalise the vector back to a Unit vector
 Ball2CamVecN2D= Ball2CamVecN2D.normalized()

 #Add 0 into the z direction part of the vector

 Ball2CamVecN3D=Ball2CamVecN2D.to_3d()
 #print(Ball2CamVecN)
 PushpullF=sens.axisSingle/4000 #Read the Joystick sensor
 BallForce = PushpullF*Ball2CamVecN3D
 own.applyForce(BallForce,False)
 #print(BallForce)

def JLRShove(cont):

 sens = cont.sensors['JLRShove']
 Contact1=cont.sensors['TouchingGnd']

 if sens.positive and Contact1.positive:
 Ball2Cam = own.getVectTo('Camera')
 #print(Ball2Cam)
 Ball2CamVecN=Ball2Cam[1] #pull out the world Vector component
 Ball2CamVecN2D=Ball2CamVecN.to_2d() # This cuts the vector down to just
x and y

 #Normalise the vector back to a Unit vector
 Ball2CamVecN2D= Ball2CamVecN2D.normalized()

 #Add 0 into the z direction part of the vector

 Ball2CamVecN3D=Ball2CamVecN2D.to_3d()

 #print(Ball2CamVecN3D)
 PushpullF=sens.axisSingle/4000 #Read the Joystick sensor
 #Now make the vector perpendicular
 # around the Z axis, is a 90 degree rotation.

 Ball2CamVecN3D=Ball2CamVecN3D*mat_rot

 BallForce = PushpullF*Ball2CamVecN3D
 own.applyForce(BallForce,False)

Yeah I know, it's a bit repetitive and shows what an amateur I am when it comes to python programming.
Too bad!

So what does this script do? Basically each module is more or less the same. The script checks to see that
the keyboard or joystick has been activates AND that the ball is still in contact with something. If it is, then it
takes the vector between the camera and the ball with the own.getVectTo('Camera') part of the script.
This yields a distance, a world vector and a local vector. We are only interested in the world vector so we
extract that with the Ball2Cam[1] component.

Now that we have a vector between the Ball and the Camera we can use it to apply View relative forces on
the ball. First though, we need to eliminate the z-axis component because we are only interested in applying

forces in the x-y plane. There are probably better ways of doing this but I chose to use the following method
which converts the vector to a 2D vector using the Ball2CamVecN.to_2d() method, normalising it with
the Ball2CamVecN2D.normalized() method, and then popping it back up into three dimensions with the
Ball2CamVecN2D.to_3d() method. Now we have a unit vector in the XY plane that points to the camera.
This can be used to apply forces back on the Ball.

 BallForce = 10*Ball2CamVecN3D
 own.applyForce(BallForce,False)

Where the 10N force is directed along the Ball2CamVecN3D vector in the appropriate direction to match the
control input. The “False” on the end of the “applyForces” method indicates that the forces are applied
based on global coordinates.

For those forces applied to the side of the Ball a 90° rotation was applied to vector using the transformation
matrix mat_rot. For the joystick parts of the module the analogue input from the joystick was scaled to
provide a variable force in the direction of the Ball-Camera vector.

 PushpullF=sens.axisSingle/4000

Otherwise the structure is the same as for the keyboard inputs.

The Empty
The empty is located inside the ball and has the ball as its parent. Its set to have no collisions, and is
constrained to stay with its vertical axis in the z-direction.

The empty was added to be something other than the ball that the Camera could track. I had found that
when I had the camera tracking the ball there was a sort of nodding motion to the view which was a bit
annoying. Adding this empty as a camera target eliminated the problem.

The images below show the logic blocks attached to the Camera Target Empty and the physics applied to it.
Because the Empty is invisible anyway, there was no need to turn on the invisibility button under the
Physics tab.

The Camera
The camera is set up to look at and chase the ball, or more to the point to the Camera Target Empty
described above. The Axis defines that it will get behind the object it is tracking, and the Height, Min, and
Max all define how far away from the object the camera will stay.

The Reset Plane
Underneath the area where the action happens there is a wide plane which is set up to return the ball to the
starting position should the ball fall over the edge of the geometry they are supposed to be moving about on.
This saves the player having to restart the game each time they fall over the edge.

One method of approaching this is to use a logic block that restarts the game. I found that this was quite
slow and interrupted the game play. The method described here relocates the ball back to a point above the
original starting point and gives it some downward velocity. This process is very fast and does not interrupt
game play. It also means that scores can be added at a later stage because the game is not being reset
each time. The Camera Target Empty and the Camera are both associated with the ball and so when the
ball is relocated the Camera Target Empty is also relocated. The Camera zips back to get back into position,
which gives a rather nice starting view angle.

In order to do this though a Python Script was required. Below shows the logic blocks used. As you can see
the plane had a simple touch sensor on it and that would activate the python script. The plane was also set
to be invisible in the Physics tab.

Below is the python code attached to the Reset Plane.

import bge
import mathutils

cont = bge.logic.getCurrentController()
scene = bge.logic.getCurrentScene()
own = cont.owner

ResetPozn = mathutils.Vector((0.0,0.0,8.0))
Zoom = mathutils.Vector((0.0,0.0,­6.0))

sens = cont.sensors['RestartGameHit']

objList = scene.objects

BallThing = objList['Ball']

if sens.positive:

 BallPoz = BallThing.worldPosition
 #print(BallPoz)
 #print(ResetPozn)
 BallThing.worldPosition=ResetPozn
 BallThing.setLinearVelocity((Zoom),False)

When triggered by the ball touching the plane, the script takes the ball back to the 0,0,8 position in the Global
Coordinates and gives it a downward velocity of 6m/s.

The Downloads Again
Just in case you missed the links the first time here they are again.

The Blender file and associated Textures (3Mb download): Download here.

The Windows Executable version (24Mb Download): Download here.

Note:
The game presented here by Hamish Trolove is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

Apart from the Switchball images all images and artwork presented on this page are Copyright Hamish
Trolove 2015.

Hamish Trolove

www.techmonkeybusiness.com

http://www.techmonkeybusiness.com/
https://app.box.com/s/0bg1ip2it8bwf6qd2hr819ute5ntk75y
http://www.techmonkeybusiness.com/models/BallRunv4_Blender.zip
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	The Inspiration
	Steely Taws – No Quitsies – Wassat mean?

	Downloads
	Controls
	Getting the same started.
	Keyboard
	Joystick

	Game mechanisms.
	The Ball
	The Empty
	The Camera
	The Reset Plane

	The Downloads Again
	Note:

