
The Shed February/March 201688

HOW TO USE A
PLAYSTATION 2
CONTROLLER WITH
YOUR ARDUINO
PROJECT.

Taking

Charge PH
O

TO
G

R
A

PH
S:

 H
A

M
IS

H
 T

RO
LO

V
E

Electronics

By Hamish Trolove

I was designing a little box with some
joysticks and a few buttons to control
a project of mine one day when it

occurred to me that it looked familiar.
I suddenly asked myself why I was

trying to build what was essentially
a game controller from scratch when
there were perfectly good game
controllers around that included the

inputs I was hoping to use as well as
a heap of other buttons and features
far beyond what I needed. And they
were cheaper than the small handful of
components I was going to need to buy
to make my own.

There has been millions of dollars
poured into the development of the
PlayStation controllers and so they

are very sophisticated, well-designed
and robust pieces of equipment that
are ideal for using as an interface for
mechatronics projects. Even though the
PlayStation 2 game console is now a
rather outdated piece of equipment, the
PlayStation 2 controller clones are still
made and can be purchased through
Trade Me extraordinarily cheaply.

89The Shed February/March 2016

By Hamish Trolove

PlayStation wiring

Not only that, but they are also easy
to connect to an Arduino. In addition
to the two high-quality joysticks, all
the buttons are pressure sensitive
which adds even more functionality to
the device.

This article demonstrates how
you would connect a PlayStation 2
controller to an Arduino and how easily
it can be used to control various devices
thanks to the PS2Xlib Arduino Library.

Applications for PS2
controllers
Where you could use a PlayStation
controller aside from on a PlayStation
console:
•	 Controlling a wheeled or tracked

vehicle's motion.
•	 Controlling a robotic arm.
•	 Interacting with a computer.
•	 Controlling a pan and tilt

camera mount.
•	 DIY radio control system by using a

bluetooth module or radio module
to transmit the commands from
the PlayStation 2 controller to
another Arduino which is
controlling the vehicle.

•	 Then there is my own pet project
which uses the PlayStation 2
controller as the pilot interface for
an ROV (aka underwater drone).

Connecting the
controller
There are two options for connecting
the controller to the Arduino. The
method for masochists is to cut off the
connector and connect the wires into
a row of terminal headers or directly
solder them to some other plug.
The wire colours in the PlayStation
diagram may help you identify which
wire is which (the 7V-9V rumble motor
supply wire is often grey in colour). A
better option is to retain the plug and
find a suitable socket. In stark contrast
to the ease of purchasing a controller,
finding sockets is much harder. It
is possible to purchase sockets and
breakout boards from the Robotshop
(http://www.robotshop.com/en/
ps2-connector.html) in America.
Unfortunately there are no local
suppliers. The cheaper alternative

D
at

a

C
lo

ck

G
N

D
3.

3VC
om

m
an

d
7V

 R
um

bl
e

m
ot

or

A
tte

nt
io

n

A
ck

no
w

le
dg

e

if you are into a bit of hacking is to
extract the sockets from a PlayStation
2 controller to USB adapter (about
$5-$10 or so through Trade Me). I
have found the tabs on the back of the
sockets are quite fragile and it is worth
embedding them in hot glue once you
have soldered some wires to it.

The illustration below shows the
PlayStation 2 plug and the pin labels.
To connect to the Arduino we only
need to connect the data, command,
ground, 3.3V, attention and clock pins.
The rumble motor pin only needs to be
connected to a 7-9V supply if rumble
feedback is desired.

The software side
Thanks to one Bill Porter an easy-to-
use library is available which will allow
users to use a PlayStation 2 controller
(or even a Guitar Hero controller) with
an Arduino. You can find it through
Bill Porter's website: “The Mind of Bill
Porter”—http://www.billporter.info/.
More specifically here is the link to his
page with links to his library—http://

www.billporter.info/2010/06/05/
playstation-2-controller-arduino-
library-v1-0/ and the library source
code can be obtained from Github
https://github.com/madsci1016/
Arduino-PS2X. Just click on the
“Download ZIP” button on the right
side of the page. Once you have the zip
file downloaded, start your Arduino
Interface and navigate through the
menu Sketch>Import Library>Add
Library. This will open a dialogue where
you can navigate to your downloaded
PS2X Library zip file.

The example
sketch included with

the library is a great
demonstration of the

capabilities of the library and
makes use of all of the features

of the PlayStation 2 controller. The
demonstration that is outlined in this
article is not quite as sophisticated but
covers the essentials needed to use
a PlayStation 2 controller to actuate
motors, servos and switch things on
and off.

To use the library in an Arduino
Sketch, it needs to be called using the
following commands:
#include <PS2X_lib.h>
PS2X ps2x;

The Shed February/March 201690

1234

ANALOG

PSB_PAD_LEFT

PSB_PAD_DOWN

PSB_PAD_UP

PSB_L1
PSB_L2 PSB_R2

PSB_R1

PSB_SELECT

PSB_START

PSB_GREEN

PSB_BLUE

PSB_R3PSB_L3

PSS_LY PSS_RY

Press on Left Stick Press on Right Stick

Upper Button Upper Button
Lower Button Lower Button

PSB_PAD_RIGHT

PSB_PINK

PSS_LX PSS_RX

PSB_RED

In the setup part of the sketch the
command to let the Arduino know
how the controller is connected to it,
looks like:
ps2x.config_gamepad(5,4,3,2,
false, false);
where the numbers are the Arduino's
digital pins where the PlayStation 2
controller pins are connected as below;
gamepad (clock, command,
attention, data, pressure
sensitivity enabled, rumble
enabled)

If you wanted to use the button
pressure sensitivity feature, in the
command line above you would set this
to “true” and if you wanted the rumble
motor available to provide feedback
then you would set this to “true” too. For
use of the rumble feature please look at
the example sketch that comes with the
PS2X library.

Once the controller is set up, the
Arduino loops through the sketch
continuously. Once per loop through,
the Arduino needs to communicate
with the controller to gather all
input data. This is done with the
following command:
ps2x.read_gamepad();

Now we can read which control has
been used. The labels used in the PS2X
library are very logical. The diagram
below shows each of the names for the
buttons and sticks.

The buttons with the coloured shapes
can also be referred to by the names
PSB_TRIANGLE, PSB_CIRCLE, PSB_
CROSS, and PSB_SQUARE.

To use the analogue pressure
sensitivity on the keys the names
are the same except for substituting
“PSAB” for “PSB”. So to allow a pressure
reading from the Green Triangle button
the name would be PSAB_GREEN or
PSAB_TRIANGLE.

The buttons can be pressed, pressed
and held, or pressed with a varying
pressure, so there are a number of
methods that can be applied to the
buttons and joystick. The methods are:
Button Pressed, Button, and Analog.
Here are some examples of how these
are used:
•	  ps2x.ButtonPressed(PSB_

RED) is for a simple press of the red
circle button.

•	  ps2x.Button(PSB_PAD_DOWN)
is for the down button on the pad
being pressed and held.

•	  ps2x.Analog(PSAB_CROSS)
is the command for measuring the
pressure applied to the “X” button,
if pressure sensitivity has been
enabled. As you can see the “PSAB”
form of the name has been used for
the button.

•	  ps2x.Analog(PSS_RY) is the
command to obtain readings
off the right analog stick in the
vertical direction.

Bringing it together
To illustrate how this works, here is an
example project. It makes use of a DC
motor, an electronic speed controller
(in this case an RC car ESC), a series
of servos and an LED array designed to
run on 7-12V. If this were to be applied
to a real project, it could be a car with
steering and two extra servos to control
a pan and tilt camera mount. A single
LED would not need the transistor, but
I have included a 12V LED array and
transistor to illustrate that other high
voltage and high current devices can
be triggered by such a system.

There is nothing demanding about
the sketch and it can run on any
Arduino or Arduino clone.

91The Shed February/March 2016

BD681

E BC

7.2V NiCd or 11.1V LiPo
to Suit ESC

Battery

5.6V output from ESC

Steering Servo
Servo 1

Servo 2

Electronic Speed
Controller (ESC)

5V from Arduino

3.3V from Arduino

1234

ANALOG

D
at

a

C
om

m
an

d

G
N

D

3.
3V

 D
C

A
tte

nt
io

n

C
lo

ck

7-12V LED Array

1kΩ

1kΩ1kΩ

470 Fμ

Transistor

1234

ANALOG

LED
Light

On/Off

Motor
Forward

Motor
Backward

Steering
Servo Right

Steering
Servo Left

Servo 1
left

Servo 1
Right

Servo 2
Left

Servo 2
Right

Electronics

Above is a diagram of the
circuit and components. The ESC
supplies 5.6V to the servos through
its control connector. The ESC I
have used has a switch on it that needs
to be turned on before the motor
will run and before any electricity is
available to the servos. Other than
that, the only components are the
three resistors for the connection to the
PlayStation 2 controller and the LED's
transistor. The capacitor is probably
not necessary because the battery
should be able to deliver a relatively
smooth supply.

The controls we want to use are:
a switch for the LED array and the
two analogue joysticks to actuate
the servos and ESC. Because the ESC
“speaks” Servo, we just treat it as a
servo in the code.

Circuit and component diagram

The Shed February/March 201692

/*
PS2Controlv0.ino
21 September 2015
Hamish Trolove - www.techmonkeybusiness.com

This sketch illustrates the use of a PlayStation 2
Controller to actuate a series of servos and an Electronic
Speed Controller (ESC) as you might do with a vehicle. An
LED light is used to illustrate the use of the PlayStation 2
Buttons.

Pin assignments are:

3.3V output to PS2 red pin
5V output to 1K ohm pull up resistors for

PS2.
Pin D02 to PS2 brown pin (data)
Pin D03 to PS2 yellow pin (attention)
Pin D04 to PS2 orange pin (command)
Pin D05 to PS2 blue pin (clock)

Pin D06 to ESC Signal Pin
Pin D07 to Steering Servo Signal pin
Pin D08 to Servo 1 Signal pin
Pin D09 to Servo 2 Signal pin

Pin D13 to LED Transistor Base

The ESC servo connection supplies 5.6V to
the servos.

The coding pulls on the PS2X library developed by
Bill Porter.

See www.billporter.info for the latest from Bill Porter
and to download the library.

The controls used for this sketch are:
Right Stick - X-axis = Steering Servo left/

right, Y-axis = ESC forward/backward
Left Stick - X-axis = Servo 2 left/right,

Y-axis = Servo 1 left/right
Triangle = Toggle the LED

*/

#include <Servo.h> //For driving the ESCs
and Servos
#include <PS2X_lib.h> // Bill Porter's PS2

Library

PS2X ps2x; //The PS2 Controller Class
Servo SteeringServo; //Create servo object

representing SteeringServo

Servo ServoN1; //Create servo object
representing Servo 1
Servo ServoN2; //Create servo object

representing Servo 2
Servo ESCcontrol; //Create servo object

representing ESC

const int LEDpin = 13; //green LED is on
Digital pin 13

volatile boolean LEDHdlts; //LED headlights
on/off toggle

int PlyStnRStickUpDn = 0; //Value read off
the PS2 Right Stick up/down.
int PlyStnRStickLtRt = 0; //Value read off

the PS2 Right Stick left/right
int PlyStnLStickUpDn = 0; //Value read off

the PS2 Left Stick up/down
int PlyStnLStickLtRt = 0; // Value read off

the PS2 Left Stick left/right

int ESCSetting = 90; //Setting for the ESC
(degrees).
int StrServoSetting = 90; //Setting for the

Steering Servo
int ServoN1Setting = 90; //Setting for the

Servo 1
int ServoN2Setting = 90; //Setting for the

Servo 2
void setup()
{
 ps2x.config_gamepad(5,4,3,2, false, false);
 //setup pins and settings: GamePad (clock,

command, attention, data, Pressures, Rumble)
 //We have disabled the pressure sensitivity

and rumble in this instance.
 pinMode(LEDpin, OUTPUT); //Sets the LEDpin

to output

 LEDHdlts = false; //Sets the Headlights
to off
 SteeringServo.attach(7);// attaches the

Steering Servo to pin 7
 ServoN1.attach(8);// attaches the Servo 1

to pin 8
 ServoN2.attach(9);// attaches the Servo 2

to pin 9
 ESCcontrol.attach(6,150,2250);// attaches

the ESC to pin 6
 //The ESC attachment command above also

includes the signal settings
 //for the maximum and minimum that the ESC

The sketch

93The Shed February/March 2016

will recognise. This
 //varies for different ESCs.

 //Set all ESCs and Servos to a neutral 90

degree position
 //this avoids the ESC trying to calibrate.
 ESCcontrol.write(90);
 SteeringServo.write(90);
 ServoN1.write(90);
 ServoN2.write(90);
 delay(5000); //Five second delay to allow

ESC and controller to
 // fully initialise.
 }

void loop()
{
 ps2x.read_gamepad(); //This needs to be

called at least once a second
 // to get data from the

controller.

 if(ps2x.ButtonPressed(PSB_GREEN)) //
Triangle pressed
 {
 LEDHdlts = !LEDHdlts; //Toggle the LED

light flag
 }

//Analogue Stick readings
 PlyStnRStickUpDn = ps2x.Analog(PSS_RY); //

Right Stick Up and Down
 PlyStnRStickLtRt = ps2x.Analog(PSS_RX); //

Right Stick Left and Right
 PlyStnLStickUpDn = ps2x.Analog(PSS_LY); //

Electronics

All things going well, when you
connect this up and connect in the
battery, you should be able to push the
triangle button to light the LED and
move the joysticks to move the servos
and run the motor.

If it does not automatically go into
Analog Mode (as indicated by the read
light on the controller), press the Analog
button. This will enable the joysticks on
the controller and set things going.

The circuit and sketch are designed
with a car ESC in mind. This means a
servo command of 90 degrees is the

left Stick Up and Down
 PlyStnLStickLtRt = ps2x.Analog(PSS_LX); //

Left Stick Left and Right

//Readings from PS2 Controller Sticks are

from 0 to 255
//with the neutral being 128. The zero

positions are to
//the left for X-axis movements and up for

Y-axis movements.

//Variables to carry the settings for the
ESCs and Servos
//The values from the PS2 Sticks are mapped

to 0 to 180 degrees

 ESCSetting = map(PlyStnRStickUp
Dn,-256,256,0,179);
 StrServoSetting = map(PlyStnRStickLt

Rt,-256,256,0,179);
 ServoN1Setting = map(PlyStnLStickUp

Dn,-256,256,0,179);
 ServoN2Setting = map(PlyStnLStickLt

Rt,-256,256,0,179);

//Write it to the Servos or ESCs

 ESCcontrol.write(ESCSetting);
 SteeringServo.write(StrServoSetting);
 ServoN1.write(ServoN1Setting);
 ServoN2.write(ServoN2Setting);
 digitalWrite(LEDpin,LEDHdlts); //Light the

LED based on headlights status flag
 delay(15);
}

neutral position. The ESCcontrol.
write(90); line in the Setup routine
sets the throttle to neutral to allow
the ESC to initialise. If you are using
a Radio Control Aircraft ESC you will
need to initialise it at 0 degrees.

Depending on the quality of the
Arduino you are using you may
need to have the USB connected to
the computer to power the Arduino.
Ordinarily the Arduino should be able
to run on the 7.2v being supplied from
the NiCad battery. If you have an 11.1V
LiPo battery and ESC designed to suit it

then you should not have any problems.

Final remark
With an input device as sophisticated
as the PlayStation 2 controller there
are a wealth of different mechatronics
projects that they can interface with.
The PS2X library makes it very easy
to access the full range of functions
available from the PlayStation 2
controller. Why reinvent the wheel
when there are already ultra-high
performance mags available for cheaper
prices than a couple of components.

