
Building New Scenery for R/C Desk PilotBuilding New Scenery for R/C Desk Pilot
A little while ago I felt the desire to write an article on the various RC Flight Simulators that I have
encountered and do some comparisons. I have yet to write that article, but in doing a look around to see
what was out there I found one that impressed me for its professional looking finish and ease of use. This
simulator is the R/C Desk Pilot (http://http://rcdeskpilot.com/). Not only is it a rather slick looking program it is
also free.
When I use the various simulators I have to hand I like to fly in all sorts of locations. R/C Desk Pilot only has
one scene, and so I started picking at it to see if it was possible to create new scenery for it. I found that it
was. This guide is intended to help others build their own scenery and also remind myself of how I did it.

R/C Desk Pilot
Here are a couple of screen shots of the simulator with its default scenery.

http://http://rcdeskpilot.com/

Some of the features that make this simulator attractive to me are;
• the planes handle reasonably realistically,
• there are opportunities for soaring,
• I can have a variety of different viewpoints including an FPV view,
• the scenery is a 3D environment rather than an image which means I can explore it,
• there is an anaglyphic display mode so that I see the 3D-ness of it all and look really goofy wearing

anaglyphic glasses at the same time,
• I can control the time of day and wind conditions (god-like powers!),
• there are some very cool challenge modes (scarecrow and pylon racing),
• there are tools to build your own aircraft,
• and it seems to be able to handle whatever controller I connect up to the computer.

So these were all things that meant that it was worthwhile trying to get to grips with how to customise the
scenery.

Rolling up the Sleeves
OK, so the scenery all lives in a directory called data/scenery/default. In there you will find a number of
image files and two text files; default.par and terrain.def. The two text files are in an xml format and are
the two files for defining the landform and its textures and to populate it with objects and features. In the
/data/ directory a couple of levels above you will find a bunch of model files in the .x format and associated
model textures.

Default.par
This tells the simulator which image file defines the landscape, the landscape's normal map, the four textures
to go on the landscape, and also the minimum and maximum height of the landscape. While the original
default.par uses the somewhat challenging .dds image format in places, I found that it seems to work with
the common ones such as .jpg and .png formats just as easily

Terrain.def
The Terrain.def is an xml list that defines the location of every tree, object, thermal, racing pylon, pilot
location, plane starting point, angle of the sun, and the sky textures. It is all quite human readable so is quite
easy to edit by hand – but don't do that because I have some scripts that you can use to generate sections of
xml that can be copied and pasted into this file.

Firstly create a copy of this default directory and put it aside as
a backup.

The Terrain
The very first step is to sort out your landforms. R/C Desk Pilot requires an RGB height map in the form of a
greyscale .png image. White is the highest elevation and black the lowest.

There are a heap of ways of generating a
suitable heightmap; from hand painting
them, to using a terrain creation tool, to
using Digital Elevation Models (DEM)s of
real terrain.
For my own scene I have used the
landscape generator in Bryce
(http://www.daz3d.com) to produce a
greyscale bitmap with a resolution of 1024
pixels per side. The easiest way of pulling
the height map from Bryce is to copy the
bitmap image from the terrain editor and
paste it into your favourite image editor.
The image shows the terrain editor screen
from Bryce 7. The terrain editor is pretty
much the same for all of the older versions
of Bryce.

http://www.daz3d.com/

Once you have the heightmap image on your clipboard just paste it into your Image Editing software as a
new image.

Your heightmap image may not cover the full range from black to white. This is not a problem, but if you are
looking to make use of the full range of heights available or maybe create some flat areas at height level
zero, it is worth tweaking the image by adjusting the colour levels. The available height range in R/C Desk
Pilot is defined in the default.par file with the lines;

<minimumheight>0</minimumheight>
<maximumheight>70</maximumheight>

Black in your heightmap corresponds to the minimum height and white to the maximum height which in this
case is 70. You can change these to suit your needs.

The height map used is 1024pixels, but the terrain model in R/C Desk pilot appears to be a 100x100 mesh,
so in theory you will only need a 100 x 100 pixel heightmap. While you have the height map in your image
editor produce a copy that is 100 pixels on a side because we will need this to better approximate how the
R/C Desk Pilot terrain mesh is interpreting the height map when it comes to distributing objects across our
scene.

So we now have a 1024pixels heightmap for use by R/C Desk Pilot to generate the terrain's shape and also
for use when we generate the Normal map which will help give the appearance of a higher definition terrain
mesh than is actually there.

and a 100 x 100 pixel height map for use by the scripts introduced later to distribute objects across the

scene. You could always use this file as the actual heightmap referred to in the default.par if you wanted.

Terrain Textures
The textures used in the terrain and how they are distributed across the terrain are all defined in the
default.par file. By substituting in your own files, you change the terrain and its textures. All of the image
files can be .jpgs or .pngs there is no need to put yourself through the pain of having to deal with .dds
formats as used in the original scene.

Here is the full content of the original default.par.

<?xml version="1.0" encoding="utf8" ?>
<scenery>
 <definition>
 <definition>data/scenery/default/terrain.def</definition>
 <heightmap>data/scenery/default/scenery_h.png</heightmap>
 <splathigh>data/scenery/default/scenery_s.dds</splathigh>
 <splatlow>data/scenery/default/splat_low.png</splatlow>
 <normalmap>data/scenery/default/scenery_l.png</normalmap>
 <texture1>data/scenery/default/grass1.jpg</texture1>
 <texture2>data/scenery/default/grass2.jpg</texture2>
 <texture3>data/scenery/default/dirt1.jpg</texture3>
 <texture4>data/scenery/default/road1.jpg</texture4>
 <minimumheight>0</minimumheight>
 <maximumheight>50</maximumheight>
 </definition>
</scenery>

The ground textures are simply bitmap tiles but the textures are distributed across the terrain by the files
defined by the <splathigh> and <splatlow> parts of the default.par xml code. <splathigh> defines which
textures go where when you are close to the ground while <splatlow> defines which textures are used for
more distant landforms. There is no real reason that you could not use the same bitmap for both
<splathigh> and <splatlow>.

The bitmaps used for <splathigh> and <splatlow> cover the whole terrain. The RGB + Black values in the
<splathigh> and <splatlow> bitmaps define which texture image goes where on the terrain. White controls
the lightness of the texture - so a slight pink will be a light coloured <texture1>. The table below
demonstrates this using the original scene files as an example.

Colour RGB Value XML “Slot” File used

Red 255,0,0 <texture1> grass1.jpg

Green 0,255,0 <texture2> grass2.jpg

Blue 0,0,255 <texture3> dirt1.jpg

Black 0,0,0 <texture3> road1.jpg

White 255,255,255

Blends of the colours creates blends of the textures. This means that from only four textures you can get a
lot of variation and subtlety into your terrain texturing. For the <splathigh> and <splatlow> used in my
custom made scene I simply handpainted the colours using the heightmap as a guide. Here is the result.

In the end I used this same image for <splatlow>.

There is nothing special about the textures you use. Ideally they should be tile-able. The image size used in
the original scene are all 512 pixels on a side. The terrain texturing is done with four textures only. Below is
the selection I used in my scene.

roughgrasstile512.jpg coloured_dirt_tile.jpg makara_rockSqrtile.jpg Road1.jpg (from original
scene)

To use my selection of textures, all I did was change the filename in the default.par and as you will see, I
used my new heightmap file called 2x2htmp.png, and the new images for <splathigh> and <splatlow> .

Here is the default.par file for my customised scene.

<?xml version="1.0" encoding="utf8" ?>
<scenery>
 <definition>
 <definition>data/scenery/default/terrain.def</definition>
 <heightmap>data/scenery/default/2x2htmp.png</heightmap>
 <splathigh>data/scenery/default/TextureGuideh.jpg</splathigh>

 <splatlow>data/scenery/default/TextureGuidel.jpg</splatlow>
 <normalmap>data/scenery/default/2x2Norm8bitu.png</normalmap>
 <texture1>data/scenery/default/roughgrasstile512.jpg</texture1>
 <texture2>data/scenery/default/coloured_dirt_tile.jpg</texture2>
 <texture3>data/scenery/default/makara_rockSqrtile.jpg</texture3>
 <texture4>data/scenery/default/road1.jpg</texture4>
 <minimumheight>0</minimumheight>
 <maximumheight>70</maximumheight>
 </definition>
</scenery>

The interaction between the lighting on the terrain and the sun is created by the texture in the <normalmap>
slot. The easiest way of getting the normal map is to use a plugin for a 2D graphics package. In this case I
am using the GIMP for which there is a plugin available and is surprisingly called “gimp-normalmap”. It can
be found here (https://code.google.com/p/gimp-normalmap/). I believe it is a GIMP version of a normal map
generator for Photoshop.

The normal map is generated from the heightmap image (the 1024x1024px version).
Here are the steps and settings I used;

First challenge: Finding where the plugin ended up. Filters>Map>Normalmap.

Second Challenge: Finding settings that don't create shadows that appear on the lighted side of the hills. It
looks kinda weird. Refer to the image below.

• The filter appears to affect the amount of detail the normal map ends up with. Setting it to 9x9
seemed to work for my terrain.

• Scale affects how deep the features are. Setting it to the maximum of 100 ensures a good strong
normalmap.

• The DU/DV map (Whatever that is) affects the colours that appear on the normalmap. Only the “8
bits (unsigned)” choice produced a normal map that had the shadows going in the right direction.

Hitting OK will generate your Normalmap. In the case of my scene I called the file produced
“2x2Norm8bitu.png”.

I found that using a “Selective
Gaussian Blur” was useful for
smoothing some of the coarse steps
that were in the Normalmap where
the terrain gradient was low. This
tool meant that the “sharper”
features of the peaks and ridges
were not blurred. You will see what I
mean when you look at the image
below which shows the un-blurred
normalmap and the preview of the
“Selective Gaussian Blur” applied to
the normalmap.

Digging into the Terrain.def
The terrain.def file is used to define things like the location of the objects within the scene. It also has the
information for locating the various ground positions for the pilot, the sun direction, sky texture, information
about thermals, and a host of other things.

Sky and Sun
The sun direction and sky textures are defined in the terrain.def file. I have not done anything to these in
my scene but to use a new sky I would just change the filenames referred to in the <Skies><Texture> part
of the xml. The sky textures are 360° images of the sky hemisphere and are 4096x1024 pixel in size.

Also within the <Skies> sections you can find the sun positions, the sunlight direction, and ambient light
direction as well as the light level controls.

Here is an example of the XML code for controlling the sky and sunlight.

 <Skies>
 <Name>Sunrise</Name>
 <Texture>sky_sunrise.jpg</Texture>
 <SunPosition xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <X>0.15</X>
 <Y>0.10</Y>
 <Z>0.0</Z>
 </SunPosition>
 <AmbientLight xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <X>0.4803922</X>
 <Y>0.4803922</Y>
 <Z>0.4803922</Z>
 </AmbientLight>
 <SunLight xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <X>0.4803922</X>
 <Y>0.4803922</Y>
 <Z>0.4803922</Z>
 </SunLight>
 <TerrainAmbient>0.1</TerrainAmbient>
 <TerrainSun>0.6</TerrainSun>
 </Skies>

Pilot Positions
Ground positions for the pilots are defined in the XML using the <PilotPositions> block of XML. The position
is measured from the centre of the terrain. You do not need to worry about the Y-axis position because the
R/C Desk Pilot program places the pilot's ground position viewpoint at virtual “eye-level” above the ground.

 <PilotPositions>
 <Name>Runway (default)</Name>
 <Position xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <X>0.1</X>
 <Y>0</Y>
 <Z>15.0</Z>
 </Position>
 </PilotPositions>

Thermals
Thermals are defined in the XML by location, size and strength as shown in the example below. As I
understand it the strength is the vertical speed in m/s (or something like it) while the size is the radius of the
thermal.

 <Thermals>
 <Position xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <X>42.5</X>
 <Y>9.79</Y>
 <Z>272</Z>
 </Position>
 <Strength>1.5</Strength>
 <Size>45</Size>
 </Thermals>

Locating Stuff
So that's all well and good but what about locating all the really interesting stuff like trees and mesh objects?
These are all defined in much the same way but to make things easier to spread lots of them across the
terrain I have developed some python scripts to help. More on this later in this document.

If you are looking to locate things in your scene it helps to have your heightmap handy so that you can
identify the locations on that map where you want something to appear in the R/C Desk Pilot scene. What I
do is use the GIMP to identify the pixel location on the heightmap where I want a feature to go. This is
displayed as some coordinates down on the bottom left hand corner of the image window. The tricky thing is
that the GIMP coordinates (and generally all image editor coordinates) do not match up with the R/C Desk
Pilot coordinates particularly well. For this reason I made up a small spreadsheet to translate the
coordinates from the image to the R/C Desk Pilot coordinates that go into the terrain.def.

Here are the link to download the spreadsheet.
http://www.techmonkeybusiness.com/Docs/ObjectWorld_Locator.ods
http://www.techmonkeybusiness.com/Docs/ObjectWorld_Locator.xls

Using the GIMP to find some image coordinates, and then using the spreadsheet to translate that into the
R/C Desk Pilot coordinates for plugging into the terrain.def file is fine for locating one or two features in the
scene but not for doing a forest or a line of power poles, or setting up a new pylon race course. That's where

http://www.techmonkeybusiness.com/Docs/ObjectWorld_Locator.xls
http://www.techmonkeybusiness.com/Docs/ObjectWorld_Locator.ods

the python scripts come into play.

The scripts make use of the 100x100 pixel terrain heightmap to calculate the vertical position of the objects
as accurately as possible. To do this they rely on the matplotlib and Numpy libraries. The python
installation you use to run these scripts must also have these libraries. These scripts were created on a
Pyzo installation, but most other python distributions will include these libraries. Compared to some python
distributions Pyzo is quite small and has a good bunch of libraries included with it. You can find Pyzo here
(http://www.pyzo.org/). At the moment the scripts are just command lines things and a bit naff to use but
they work. I hope to make up a proper interface for them and even package them up as a standalone tool,
but that is probably a long way off because I would have to teach myself GUI development and package
deployment.

The scripts produce a text file with XML segments for your new additions to the scene. The XML can be cut
and pasted into the terrain.def. The text files produced tend to end up under the user's home directory in
Linux systems and in the C:/Documents and Settings/YourUserName/ directory in Windows XP and
who knows where on a Windows 7 system.

I am very aware that the scripts I have created are clumsily written with quite a bit of stuff repeated because I
could not be bothered creating functions for them and I'm not a coder. “I could write better than that.” I hear
the coders saying. To which I say “I'm sure you could......but......so what? Bite me.”

A brief note about trees:

In RC Desk Pilot scenes trees are handled a little different from other objects. They only need to be located
in the X and Z directions. The vertical Y-direction is handled by the RC Desk Pilot program itself and it will
very tidily sit them on the terrain. They do not have any orientation either because they orient themselves
towards the camera.

As far as I can tell there are only four different types of trees; Trees, SimpleTrees, SimpleTallTrees, and
SimpleSmallTrees. The ability to define the look of the trees appears to be coded into the RC Desk Pilot
program itself. So, other than changing the various tree bitmaps, the only way of introducing new trees is as
mesh objects for which the method in the next section would need to be used.

Typical XML for a SimpleTree:
 <SimpleTrees>
 <Position xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <X>347.6513</X>
 <Y>3.03853321</Y>
 <Z>439.099365</Z>
 </Position>
 </SimpleTrees>

A brief note about objects:

Objects and their texture files are located in the /data/ directory of R/C Desk Pilot. Objects are all in a .x
format with the y-axis vertical. The <FileName> XML is where you can identify the model you want to use.

The XML for objects looks like this:

 <Objects>
 <FileName>PowerPole249.x</FileName>
 <Position xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <X>175.05</X>
 <Y>18</Y>
 <Z>227.9</Z>
 </Position>
 <Orientation xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <X>0</X>
 <Y>0</Y>
 <Z>0</Z>

http://www.pyzo.org/

 </Orientation>
 </Objects>

The elevation of your object needs to be defined (and can be calculated by the scripts) as does the
orientation. The orientation is measured in radians.

The model scale appears to be about 1 Blender unit per meter in the model – roughly. The best check is to
import one of the .x files (eg parkbench.x) that came with the original program and eyeball its size against
the model you have created. You will need to rotate your model to have the y-axis as its vertical before you
export it.

Random Scatter, Line Distribution, and Pylon Race Scripts.
Here are the scripts.
Download the Python Scripts Here:
http://www.techmonkeybusiness.com/Code/RCDeskPilot_Scenery_Building_Scripts.zip

Random Scatter Script - RCDesktopPilot_Object_Distribv3.py

The random scatter script is used for both trees and objects. After you have told it a filename to save to and
what heightmap to use, it will let you choose to scatter trees or objects. You define a coordinate you wish to
use as the centre for a circle of scattered objects. Provide it with a radius to define the area over which to
scatter the trees or objects, and a number of items, and it will do the rest.

Random Scatter Script - RCDesktopPilot_Object_Distribv5.py

(8th Feb 2015) This variation of the random scatter script was developed to make it easier to process a large
number of tree groups and objects. Basically I was getting frustrated keying in all of these coordinates and
stuffing it up each time. The way this works is that you use the “ObjectWorld_Locator.ods” or
“ObjectWorld_Locator.xls” spreadsheet or some other tool of your own devising to create a CSV file with the
following columns.

Object or
Tree Group
Indicator

Object
Filename or
Treegroup
Type

RC Desk Pilot
X-location

RC Desk Pilot
Z-location

RC Desk Pilot
radius over
which to
spread the
items.

Number of
objects to
distribute.

Orientation of
the objects
(radians)

• Object or Tree Group Indicator: This indicates which process to use. The valid entries are; “Object”,
or “Tree Group”

• Object Filename or Tree group Type: This is where the model file is identified or the tree group type
is identified. If the tree group type is “random” or spelled wrong, a group of random trees will be
generated. The valid tree group types are;
"Trees","SimpleTrees","SimpleSmallTrees","SimpleTallTrees"

• RC Desk Pilot X-location: This is the RC Desk Pilot world X-coordinate of the centre point of the
group.

• RC Desk Pilot Z-location: This is the RC Desk Pilot world Z-coordinate of the centre point of the
group.

• RC Desk Pilot radius over which to spread the items: This is the RC Desk Pilot world radius of the
circle within which the objects or trees will be distributed. In this scale it is in metres.

• Number of objects to distribute: How many objects or trees do you want to distribute in the group.
• Orientation of the objects (radians): This is only relevant for objects. Trees orient themselves based

on the pilots view.

Line Distribution Script - RCDesktopPilot_ObjectLines_Distribv2.py

There's nothing like a line of something to make things look like humans have had a go at it. This script
allows you to run a line of objects or trees across your terrain in any direction. It's ideal for power poles, and
signboards indicating that the world ends beyond the boundary of the terrain. You define the coordinates of
the start and end points and tell it what you want to distribute and how many, and it generates the XML to go
into the terrain.def file.

http://www.techmonkeybusiness.com/Docs/ObjectWorld_Locator.xls
http://www.techmonkeybusiness.com/Docs/ObjectWorld_Locator.ods
http://www.techmonkeybusiness.com/Code/RCDeskPilot_Scenery_Building_Scripts.zip

Pylon Races - RCDesktopPilot_Pylonsv2.py

One of the really cool features of R/C Desk Pilot is the challenges, particularly the pylon race. This script
takes a .csv file list of coordinates and uses it to generate the locations of the pylon race gates. As with the
other scripts, it makes use of the 100 x 100 pixel terrain heightmap. The CSV must contain the start and the
end point coordinates which are the same point. The list below is the content of the CSV I provided to the
script to generate the gate positions of the pylon race in my Desert Scene.

0,0
83.01,5.86
207.03,36.13
346.68,57.62
440.43,12.7
331.05,232.42
20.51,221.29
330.08,46.88
403.32,53.71
328.13,127.93
155.27,318.36
207.03,430.66
315.43,453.13
381.84,397.46
278.32,265.63
197.27,123.05
93.75,3.91
0,0

The XML file it produces contains all of the gates for the new pylon race. Just paste it over the original pylon
race entries in your terrain.def.

The pylon gate model is called gate.x. It is possible to overwrite this with a new gate model and texture to
suit your own personal style. I have done this with my second more whimsical desert scene.

The Tractor
As you will see when you run R/C Desk Pilot, there is a nifty little tractor quietly plowing some fields in one
part of the scene. This object is coded into R/C Desk Pilot itself and so cannot be removed as far as I can
see. So you will find that the scene you build will include this tractor plowing whatever terrain you give it.
Luckily it is very good at following the terrain and so it does not look out of place.

To Finish
Here is the custom-made scene in R/C Desk Pilot.

Download the Custom Scene here:
http://www.techmonkeybusiness.com/models/RC_DeskPilot_data_and_Scenery.zip

and also the slightly more whimsical Desert Scene.
http://www.techmonkeybusiness.com/models/ RC_Desk_Pilot_Desert_Scene.zip

Just unzip this into your R/C Desk Pilot /data/ directory to install it after you have created a backup of
your original /scenery/default/ directory. The .x format models and their textures should end up in
the /data/ directory. Please note that you can only install and run one scene at any one time. As far as I
have been able to tell there is no way of selecting different scenes within the program itself.

The scenes includes a new pylon race as well that is best attempted using the FPV view (unless you are
some sort of radio control gamer genius and can guess where the plane is when it is out of sight.)

http://www.techmonkeybusiness.com/models/RC_Desk_Pilot_Desert_Scene.zip
http://www.techmonkeybusiness.com/models/RC_Desk_Pilot_Desert_Scene.zip
http://www.techmonkeybusiness.com/models/RC_DeskPilot_data_and_Scenery.zip

Good luck and have fun.

www.techmonkeybusiness.comwww.techmonkeybusiness.com

http://www.techmonkeybusiness.com/

	R/C Desk Pilot
	Rolling up the Sleeves
	The Terrain
	Terrain Textures
	Digging into the Terrain.def
	Sky and Sun
	Pilot Positions
	Thermals
	Locating Stuff
	A brief note about trees:
	A brief note about objects:
	Random Scatter, Line Distribution, and Pylon Race Scripts.
	Random Scatter Script - RCDesktopPilot_Object_Distribv3.py
	Random Scatter Script - RCDesktopPilot_Object_Distribv5.py
	Line Distribution Script - RCDesktopPilot_ObjectLines_Distribv2.py
	Pylon Races - RCDesktopPilot_Pylonsv2.py

	The Tractor

	To Finish

